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Background

• Using deep learning to determine the genre of a painting

• X: painting image –> Y: one of 44 genres

Data

• Kaggle’s dataset ”Painters by numbers”

• 80000 images and their correspoinding style, genre, artist,
and date

• gray-scale images repeated 3 times to match the RGB di-
mension

• 4th channel in RGBA images dropped to match the RGB
dimension

• Manually downloding more images of rare genres

Models

Trasnfer Learning in tensorflow

• Input size (300,400,3)

• Adding a shallow (one or two layers) NN to the ’avgpool5’
output of a pre-trained VGG19 model

ResNet-50 in Keras

• Input size (128,128,3)

• Trainig all layers

Trasnfer Learning in Keras using ResNet-50

• Input size (224,224,3)

• Adding a softmax layer

Results and Discussion

Model Train Acc (%) Test Acc (%)
VGG-19 (trasnfer learning) 98 (%) 56 (%)
ResNet-50 (Fully trained) 97 (%) 71 (%)

ResNet-50 (1. Keep top layer, add softamx) 37 (%) 37 (%)
ResNet-50 (2. Remove top layer, add softamx) 69 (%) 61 (%)
ResNet-50 (3. re-train last 24 layers + softamx) 95 (%) 62 (%)

• Models generally have high variance

• Variance problem due to data imbalance

• Confusion matrix show the inbalance in the data

• Rare genres are more likely to get confused with common
ones

• Some genres are more susceptible to be confused with each
other and penalizing their misclassification more in the
loss function could improve the model

• ”genre-painting” image misclassified as ”figurative”:

• ”history” image misclassified as ”landscape”:

Future work

• Data augmentation script to increase number of images of
rare genres

• More comprehensive hyperparameters search and trying
different ways of regularization

• Using GAN to generate paintings of a particular genre
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