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Results and Discussion

o Using deep learning to determine the genre of a painting

o X: painting image —> Y: one of 44 genres

o Kaggle's dataset "Painters by numbers”

e 30000 1images and their correspoinding style, genre, artist,
and date

e oray-scale images repeated 3 times to match the RGB di-
mension

o 4th channel in RGBA images dropped to match the RGB
dimension

o Manually downloding more images of rare genres

Trasnfer Learning in tensorflow
o Input size (300,400,3)

 Adding a shallow (one or two layers) NN to the "avgpoold’
output of a pre-trained VGG19 model

ResNet-50 in Keras

o Input size (128,128,3)

o Irainig all layers

Trasnfer Learning in Keras using ResNet-50
o Input size (224,224,3)

o Adding a softmax layer
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Model Train Acc (%) Test Acc (%)
VGG-19 (trasnfer learning) 98 (%) 56 (%)
ResNet-50 (Fully trained) 97 (%) 71 (%)
ResNet-50 (1. Keep top layer, add softamx) 37 (%) 37 (%)
ResNet-50 (2. Remove top layer, add softamx) 69 (%) 61 (%)
ResNet-50 (3. re-train last 24 layers + softamx) 95 (%) 62 (%)

e Models generally have high variance

o Variance problem due to data imbalance

o Confusion matrix show the inbalance in the data
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e Rare genres are more likely to get contused with common
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e DOMe genres are more susceptible to be confused with each
other and penalizing their misclassification more in the

loss function could improve the model

o 'genre-painting”’ image misclassified as "figurative”:

o "history” image misclassified as "landscape”:

« Data augmentation script to increase number of images of

rare genres

e More comprehensive hyperparameters search and trying

different ways of regularization

« Using GAN to generate paintings of a particular genre
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