QuickDraw Sketch Recognition Using CNN and RNN

Fangqin Dai
fdai @stanford.edu

Abstract

This article aims to apply and compare the performance
of different kinds of deep neural networks on the Quick-
Draw sketch dataset. Two types of neural networks, CNN
and RNN are explored in this article. The final evaluation
accuracy achieved were 93.2% and 89.8% respectively.

Compared to natural images, human sketches are sparse
and lack of details, however a freehand sketch is composed
of groups of sequences of strokes containing temporal or-
dering and grouping information, thus sketch recognition is
a quite different problem than image classification. Most
image classification methods including CNN discard such
temporal information. When use CNN methods, we try to
encode temporal information into images as much as possi-
ble; when use RNN methods, we use ordering information
inherently.

1 Introduction

”Quick, Draw!” is an online game developed by Google
that challenges players to draw a picture of a certain cate-
gory, such as “alarm clock”, ”potato,” etc. and then uses
a neural network artificial intelligence to guess what the
drawings represent. This game has generated over 1 billion
drawings, and a subset of which will be used as training set
to advance the model and increase its ability to guess with
higher accuracy in the future. The work presented here will
benefit the development on handwriting recognition and its
robust applications in areas including OCR (Optical Char-
acter Recognition), ASR (Automatic Speech Recognition)
and NLP (Natural Language Processing).

2 Related Work

Sketch is a simple and handy way to convey ideas that
has existed since prehistoric times. While sketch recogni-
tion is straightforward for human, it could be a challenge
for computer, due to the lack of rich texture details, inher-
ent ambiguities, and its large shape variations.

Xiaomeng Shen
xshen10@stanford.edu

There are currently three representations to process
sketches for recognition:

e raster pixel sketch, where only stroke-covered area is
marked as 1 while the rest is marked as zero. However,
this approach does not allow CNN to assign different
weights to strokes for better recognition.[10]

e vector sketch, where the input is a sequence of strokes in
drawing order, such as described in sketchRNN[2]

e a single-branch attentive network architecture RNN-
Rasterization-CNN (Sketch-R2CNN),[5] which takes
advantages of both vector and raster representations of
sketches during the learning process and is able to fo-
cus on adaptively learned important strokes, with an
attention mechanism

With the advancement made in deep learning, lots of
work has also been done on sketch recognition. Sketch-
a-Net is specifically adapted for sketch images by using
large kernels in convolutions to accommodate the sparsity
of stroke pixels, and surpassed the human performance on
TU-Berlin benchmark for the first time.[8][6]

ResNet50 has also been used to evaluate sketch recogni-
tion, as a CNN-variant method.[4]

Sketchmate as an RNN branch has demonstrated that
temporal ordering in vector sketches can complement
the other CNN branch for extracting more descriptive
features.[7]

3 Data Prepossessing
3.1 Data format

The data in train_simplified.zip consists of 6 columns,
key drawing information is stored as time-series strokes un-
der ”drawing”, and each row contains one drawing. Exam-
ples of data structure are shown in figure 1 and figure 2.
The data set is well-balanced with roughly 140k samples
per class. We will use all 49 million samples for training
and 112k samples as the test set.

Figure 1. Raw doodling data format

countrycode | drawing key_id recognized |timestamp word

2017-03-21
s 13:02:16.246170

2017-03-17
eue 04:32:30.717220 | teddy-bear
L xu]

olus [[[111, 148, 161,175, 199, 218, |51599108514775
04

231, 236, 234...
[[191, 85, 49, 35, 32, 34, 41,57, |59591584299089
88, 109, 13... 92

alarm c\ock%

1[8G

Figure 2. Drawing array format

[// First stroke
[x0, x1, x2, x3, ...],
[y0, v1, y2, y3, ...1,
[t0, t1, t2, t3, ...]

[// Second stroke
[x0, x1, x2; X3; «-=]7
[y0, y1, y2, y3, ...1,
[0 €1; €25 €37 wwwl

. // Additional strokes

3.2 Remove whitespaces

Remove whitespaces from the drawing column in
CSV files will save around 20% space for both memory and
disk. After removing whitespaces the files size reduce from
23GB to 19GB.

3.3 Parse strokes with high performance

Many people are using ast.literal_eval() to
parse the drawing column, actually it’s much slower

than json.loads () . We use both ways to parse the
whole simplified dataset and store to a single HDFS5 file, to
compare their performance.

Table 1. Parsing methods comparison

Empty no parse astliteral_eval() json.loads()
Time 5087s 13575s 2781s
HDF5 File Size 18G 13G 13G

Table 1 shows that json.loads () is about 5x faster

than ast.literal_eval () .

3.4 Generate images on the fly

The training dataset contains 49707579 images, if we
draw them into 256x256 RGB images, they will use
49707579 x 256 x 256 bytes, which is about 8.89TB ! Read-
ing so many files on disk is definitely much slower than
generating images on the fly during training.

3.5 Use cv2 to generate images

There are a lot of people using the pillow library to
manipulate images, it’s a very popular library, however it’s
9x slower than cv2, so do use cv2 instead of pillow to gen-
erate images.

3.6 Split and shuffle the training data

The training data is too huge to load into memory, in-
stead we split the into 100 parts, shuffle then and save each
part in a HDFS file. During training we load one part into
memory in turn. To be more memory efficient we only
use the drawing and word columns. Do remember
to shuffle the data before saving to HDFS5 files.

3.7 Encode as much information as possible in
images

The strokes in train_.simplified.zip contain
temporal ordering and grouping information. We use var-
ious ways to draw images from strokes, all of them aim to
encode as much information as possible in images. How-
ever there is no silver bullet so we use all methods to draw
images and train them respectively.

Multiple resolutions are used, including 112x112,
128x128, 192x192, 224x224, 256x256.

3.8 Prepare sequential data to RNN

e Running Example: When possible, use a running exam-
ple throughout the paper. It can be introduced either as
a subsection at the end of the Introduction, or its own
Section 2 or 3 (depending on Related Work).

e Preliminaries: This section, which follows the Introduc-
tion and possibly Related Work and/or Running Exam-
ple, sets up notation and terminology that is not part of
the technical contribution. One important function of
this section is to delineate material that’s not original
but is needed for the paper. Be concise — remember
Guideline 1.

o Content: The meat of the paper includes algorithms, sys-
tem descriptions, new language constructs, analyses,
etc. Whenever possible use a “top-down” description:
readers should be able to see where the material is go-
ing, and they should be able to skip ahead and still get
the idea.

4 Experiments
4.1 Convolutional Neural Networks

Evaluation metric used in the project is Mean Average
Precision @ 3 (MAP@3).

4.1.1 Simple CNN

We build a simple CNN network constructed with layers
described in table 2. The number of filters increases with
depth. Small stride of (1,1) is used after first convolutional
layer to ensure capturing most information. Large filter size
is chosen given the simplicity of doodling image. For pool-
ing layer, we used overlap pooling with 3x3 pooling size
and stride of 2.[1]

With this simple CNN network, after trained on the en-
tire training dataset for one epoch, it achieves 0.82 top1 ac-
curacy and top3 accuracy 0.85.

Table 2. The architecture of shallow CNN

type filter filter stride pad
Size num

Convl+ReLU 7x7 16 2,2) same
Conv2+RelLU 7x7 32 (1,1) same
Conv3+ReLU 7x7 48 (1,1) same
Maxpool 3x3 2,2) same
Conv4+ReLU 3x3 64 (1,1) same
Conv5+RelLU 3x3 96 (1,1) same
Maxpool 3x3 2,2) same
Convo+ReLU 3x3 128 2,2) same
Conv7+ReLU 3x3 256 (1,1) same
Conv8+ReLU 3x3 512 (1,1) same
Maxpool 3x3 2,2) same
Flatten+FC

This simple CNN is shallow therefore it’s fast to train.
We use it to test the whole training pipeline and make sure
all code work smoothly together.

4.1.2 MobileNet and MobileNetV2

MobileNet is a fast and memory efficient CNN network[3],
we use it as a starting point for this Kaggle contest. First
we tried 64x64 grayscale images with static color, then we
adopted dynamic color according to the ordering of strokes,
table 3 shows that dynamic color can improve the accuracy
significantly, which is expected because it encode temporal
information into images.

We trained MobileNet and MobileNetV?2 [9] with differ-
ent resolutions and batch sizes, and we don’t see any im-
provement from MobileNetV2 and it’s even slower to train.

Table 3. Static color VS. dynamic color
Model Image Color Batch Epo- Time Top3
Size Size chs (h) Acc
MobileNet 64 black 680 1 3.6 0.875
MobileNet 64 dynamic 680 1 32 0.896

Table 4. MobileNet and MobileNetV2

Model Image Color Batch Epo- Time Top3
Size Size chs (h) Acc

MobileNet 64 dynamic 680 3 743 00915

MobileNetV2 64 dynamic 680 3 9.57 0.90

4.1.3 ResNet

ResNet has been the de-facto standard in image classifica-
tion, so we applied it to the sketch recognition problem.
We trained ResNet50 with different resolutions and differ-
ent colors.

Table ?? shows the results of ResNet50 trained on
128x128 images with various colors, their differences are
very close so there is no significant best dynamic color
mechanism, in the end we use all colors including one static
color and two dynamic colors.

Table 5. ResNet50 128x128 with various col-
ors

Image color Batch Epo- Time Top3
Size Size chs (h) Acc

128 static 260 1 22.43 0.892
128 colorl 260 1 22.39 0912
128 color2 260 1 22.41 0.919

Table 6shows that the larger resolution the better accu-
racy, which is reasonable.

4.2 Recurrent Neural Networks

The strokes are sequential data so it’s worthy to try se-
quence models. All RNN models seem not good than CNN
model in table 8.

5 Conclusions and Future Improvements

In general CNNs are better than RNNs, "CNN+RNN”
architecture is the worst and "RNN+CNN” shoud be the
best and we haven’t seen it yet.

In order to ac hive higher accuracy, the "RNN+CNN”
architecture worth exploring, and ensemble definitely can
improve the accuracy by 1 percent at least.

Table 6. ResNet50 with different resolutions

Image color Batch Epo- Time Top3
Size Size chs (h) Acc

64 static 1031 1 6.61 0.892
112 static 327 1 18.53 0.912
128 static 260 1 22.41 0915
192 static 116 1 54.65 0.914
224 static 81 1 74.46 0.919
256 static 64 1 97.28 0.923

Table 7. Models Top3 Accuracy.

Model Image Batch Epo- Time Top3
Size Size chs (h) Acc
MobileNet 64 680 1 32 0.909
MobileNetV2 64 680 1 35 0.868
ResNet50 64 1031 1 6.47 0.893
MobileNet 128 680 1 21.8 0914
ResNet50 128 260 4 81.16 0.932
References

(1]

(2]

I. S. A. Krizhevsky and G. E. Hinton. Imagenet clas-

sification with deep con- volutional neural networks.
(25 10901098), 2017.

D. Ha and D. Eck. A neural representation of sketch
draw- ings. 2018.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural net-

works for mobile vision applications. CoRR,
abs/1704.04861, 2017.

S.R.J. S. Kaiming He, Xiangyu Zhang. Deep residual
learning for image recognition. In Proc. IEEE CVPR.

Y. Z. Q. S. H. FE. C-L. T. Lei Li, Changqing Zou.
Sketch-r2cnn: An attentive network for vector sketch
recognition. November.

J. H. M. Eitz and M. Alexa. How do humans sketch
objects? ACM TOG.

T. Y. K. P Y-Z S-T. X. T. M. H. Z. M. P. Xu,
Y. Huang and J. Guo. Sketchmate: Deep hashing for

Table 8. RNNs
Model Batch Epo- Time Top3
Size chs (h) Acc
Conv1D+LSTM 432 1 8.43 0.873
ConvLSTM2D_Plain 277 1 25.730.885
ConvSTM2D MobileNet 320 1 37.990.898

(8]

(9]

(10]

million-scale human sketch retrieval. In Proc. IEEE
CVPR.

F L. Y-Z. S-T. X. Q. Yu, Y. Yang and T. M.
Hospedales. Sketch-a-net: A deep neural network that
beats humans. IJCV.

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov,
and L. Chen. Inverted residuals and linear bottlenecks:
Mobile networks for classification, detection and seg-
mentation. CoRR, abs/1801.04381, 2018.

R. G. Schneider and T. Tuytelaars. Sketch classifi-
cation and classification-driven analysis using fisher
vectors. ACM TOG, 33(6):174:1 — 174:9.

