Video Vehicle Detection with YOLO

Jeffrey Gu Boning Zheng
ICME Department of Statistics
Stanford University Stanford University
jeffgulstanford.edu b7zheng@stanford.edu

1 Introduction

Multi-object detection is the task of finding objects in an image or video frame, which consists of
object localization, the problem of putting a bounding box around an object, and object classification,
the problem of figuring out the class of the object. Object detection is important for understanding
images and videos, and applications include image classification, face recognition, and human
behavior analysis (1). Multi-object detection is also an important component of object tracking
algorithms. General object tracking algorithms are important in autonomous driving, robotics,
surveillance, and medical applications (2). The performance of state-of-the-art object detectors has
improved in recent years thanks to the introduction of deep neural networks and novel object detection
frameworks such as R-CNN, but these detectors are not specifically designed for video detection
(3). Objects in videos display temporal consistency, which means that an object’s location does not
change much from frame to frame, and have context, which means that false positive detections are
not likely to appear in many frames (3). Many techniques have been developed to use this information,
such as tubelets (3) and sequential non-maximal suppression (4).

Most general-purpose object detection algorithms are very complex and thus typically do not run in
real-time, which we define to be 30 frames per second (fps). For example, R-CNN, one of the high
performance object detection architectures, takes 40 seconds per image at test time (5). One of the
object detectors capable of running in real-time is YOLO (5). However, YOLO does not perform as
well as the state-of-the-art object detectors (5). The aim of this project is to train YOLO for video
vehicle detection and investigate techniques that may improve its performance and can be adapted to
run in real-time. We trained two variations of the YOLO model for vehicle detection and apply a
sequential non-max suppression to take advantage of temporal consistency in video data.

2 Related work

Most high performance object detection models are based on convolutional neural networks (CNNss).
The three major models are Regions with Convolutional Neural Networks (R-CNN), YOLO, and
Single-Shot multibox Detector (SSD) (3). R-CNN models and its successor solve the detection
problem in stages, including generating bounding-box proposals, computing features for each region
using a CNN, and then classifying each region. YOLO works by dividing an input image into a grid
of evenly spaced cells and predicting bounding boxes and object scores for each grid cell (5). SSD
uses set anchor boxes of different scales and aspect ratios to generate bounding boxes (3). Of the
three models, YOLO and SSD are capable of running in real time but R-CNN is not.

Many methods have been proposed to take advantage of temporal consistency and other extra
information available from videos. One idea, due to Galteri et al., (6) is to use detections and detector

CS 230: Deep Learning, Autumn 2018, Stanford University, CA. (Latex template borrowed from NIPS 2017.)

scores from the previous frame to re-rank region proposals for the current frame. Another idea,
due to Kang et al., is to use tubelets, which are sequences of bounding box proposals, to exploit
temporal consistency. Kang et al. propose a Tubelets with Convolutional Neural Networks (T-CNN)
framework, which consists of of still-image object detection, multi-context suppression and motion-
guided propagation, tubelet rescoring, and model combination (3). The second step leverages context
to remove false postives and and consistency (via tubelets) to boost low scoring correct detections
or to find non-detected objects. Tubelet rescoring is designed to increase the amount of time that
tubelets can handle. The authors have also proposed another network to increase the speed of tubelet
proposal generation (7). Sequential non-maximum suppression (seq-NMS) is another idea, which
uses sequences of videos instead of single frames during non-maximum suppression (4), and is
intended to boost weak detections using consistency. Our approach differs from their approach in
that we will attempt to adapt Seq-NMS to work with the YOLO detection model (the authors of (4)
use Zeiler-Fergus and VGG-16 as their detectors) and try to specialize to vehicle detections.

3 Dataset and Features

Figure 1: Example frames from videos in the UA-DETRAC dataset

The University at Albany DETection and tRACking (UA-DETRAC) dataset is a multi-object detection
and tracking dataset (8). The dataset consists of 100 videos of urban traffic, which were recorded at
25 fps at a resolution of 960 x 540. The videos are manually annotated, and in total there are 140,000
frames with 8250 vehicles and 1.21 million labeled bounding boxes. The test set consists of 40 video
and is split by level of difficulty. The levels of difficulty are easy (with 10 such sequences), medium
(20 sequences), and hard (10 sequences), where the difficulty is measured by the detection rate of the
EdgeBox method (8). In addition to the bounding boxes, several other attributes are also annotated:
vehicle category, weather, scale, occlusion ratio, and truncation ratio. Our pre-processing consisted
of re-sizing all images were re-sized to a resolution of 416x416.

4 Methods

Our approach is as follows: first, we will create a baseline object detection model based on the
YOLO architecture. We do this using the darkflow library, which is an open-source TensorFlow-
based implementation of the YOLO model. Our dataset currently consists of 60 videos from the
UA-DETRAC training set and their annotations. We split this set into 54 training videos and 6 testing
videos. For the six testing videos, we chose six videos with a good mix of different times and weather
conditions.

We first trained different variations of the YOLO object detection architectures to perform the object
detection task, including YOLOv2 and Tiny-YOLO (9). Below is a summary of the YOLOv2
architecture. The architecture for Tiny-YOLO is similar, but only with 8 convolutional layers in the
bulk of the network.

YOLO minimizes the following loss function:

Darknet-19 Architecture

Type Filters| Size | Stride Output
Convolutional | 32 3x3 1 416 x416 x 32
Maxpool 2x2 2 208 x 208 x 32
Convolutional | 64 3x3 1 208 x 208 x 64
Maxpool 2x2 2! 104 x 104 x 64
Convolutional | 128 | 3x3 1 104 x 104 x 128
Darknet-19 Convolutional Neural Network Convolutional | 64 1x1 1 104 x 104 x 64
Convolutional | 128 | 3x3 1 104 x 104 x 128
e Maxpool 2x2 2 52x52x128
Image Convolutional | 256 | 3x3 1 52 x 52 x 256
Convolutional | 128 | 1x1 1 52x52x 128
Convolutional | 256 | 3x3 1 52 x 52 x 256
Maxpool 2x2 2 26 x 26 x 256
Convolutional | 512 | 3x3 1 26 x26 x 512
o Convolutional | 256 | 1x1 1 26 x 26 x 256
" Convolutional | 512 | 3x3 1 26 x26 x 512
3 Convolutional | 256 | 1x1 1 26 x 26 x 256
3 Convolutional | 512 | 3x3 1 26 x26 x 512
Maxpool 2%2 2 13x13x512
Convolutional | 1024 | 3x 3 1 13x13x 1024
Convolutional | 512 | 1x1 1 13x13x512
Convolutional | 1024 | 3x 3 q 13x13x 1024
Convolutional | 512 | 1x1 1 13x13x512
Convolutional | 1024 | 3x 3 1 13x13x 1024

Figure 2: YOLO v2 Architecture

s2 B
Acoord Z Z]1:‘;] [(391 — fi’i)Q + (y;i — ﬂi)ﬂ

i=0j=0

S [(var - vy + (Vi - i)]

i=0 ;=0

s?2 B .
+ZZ]12;' (Ci = C'z‘)z

i=0j=0

s2 B) IR
+ Aoy Y > 10 (€i - &)

i=0 j=0
52
obj ” 2
+3°1 ST (pile) — pile))
i=0 cEclasses

where (x;,y;) are the top left coordinates of the bounding box, h; and w; are the height and width
of the bounding box, C; is the box confidence score, and p;(c) is the class conditional probability.
YOLO works by splitting an image into evenly spaced cells and having each cell predict a bounding
box and an object score (the probability that there is an object in the bounding box) simultaneously.
Before training, we initialized the weights for the YOLO models using pre-trained weights.

We also implement sequential non-maximum suppression (Seq-NMS) as a post-processing step for
the YOLOvV2 model. The algorithm for Seq-NMS has three parts: sequence selection, sequence
re-scoring, and suppression (4). In analogy to single frame NMS, the first step consists of finding the
maximum sequence of frames with respect to the sum of the object scores in each frame. To take
advantage of temporal consistency, we also enforce the rule that adjacent frames have high overlap,
which mathematically is the condition that the intersection over union (IoU) is greater than 0.5 (4).

te
1* = argmax Z Stlie] (D
btgrbte gt
st.O<t <t €T 2)
S.t. IOU(bt[it], bt+1[it+1]) > 05,Vt S [ts, te) (3)

We implement this using a dynamic programming algorithm, as suggested by the original authors
of Seq-NMS (4). The second step is to re-score all the frames of the sequence with some function.
(4) uses the average of the scores, the maximum score, and the best score out of single-frame NMS,
average, and the maximum to re-score the sequence, but we will only use average re-scoring. Like
single-frame NMS, the last step is to suppress frames that have high overlap with the frames in the
sequence, in order to avoid repeat detections. The authors of the original paper (4) suppress frames
with an IoU larger than 0.3, so that’s the value we will also use.

5 Experiments/Results/Discussion

We trained two versions of the YOLO architecture for vehicle detection, YOLOv2 and Tiny-YOLO.
To compare performance between models, we use mean average precision (mAP) as defined in (10),
which is a weighted average of the average precision for each class.

To train the models, we used the Adam optimizer with learning rate le-5 decaying to 1e-6. All models
were trained for 3 epochs, where the training/validation losses plateaued.

The overall performance of YOLOV2, the better performing of the two YOLO models, achieves a
mAP score of 77%, compared to 62% for Tiny Yolo. For reference, the best performing YOLOv2
model benchmarked on the UA-DETRAC website achieves a mAP of 57.72%, but the training
and test sets for the official benchmark are not the same as ours, so the numbers are not directly
comparable.

| Video | Time | mAP (%) |

MVI_20051 Day 81
MVI_39861 Night 61
MVI_40181 Day 88
MVI_40732 | Cloudy 88
MVI_41063 Day 80
MVI_63552 Day 78

Overall: 77

Table 1: Summary of mAP scores for YOLOv2

We also tested Seq-NMS with YOLOV?2 as the base detector on a small test set composed of a portion
of MVI_20051, and found that Seq-NMS performs as well as traditional single-frame NMS but
does not exceed its performance. A possible reason for Seq-NMS not exceeding the performance on
traditional NMS is that Seq-NMS struggles with detector drift, where detections will drift between
objects, which are usually close together and similar in appearance, leading to missed detections (4).
In an urban traffic environment, there will be many frames with many cars close together, which can
potentially cause many instances of detector drift, though our test set is too small to say anything
conclusive. One potential way to fix this is to make the YOLO grid more fine, so it is harder for a
detection to drift. The qualitative detections in Figure 3 are quite accurate but it seems to struggle

Figure 3: Detections and groundtruth in a single frame using Seq-NMS detection

with larger objects. If we examine the image of the bus, which looks like possibly the worst detection,
it seems to include part of the car. This can lead spurious detections and false positives (4), and
this may also be a common problem in urban traffic videos, as there will often be parts of other
cars nearby, though as before our dataset is very small. The original authors of Seq-NMS have also
identified this problem in their dataset, and this probably results from the fact that the objective
function in Seq-NMS (Equations (1)-(3)) does not penalize adding more detections (4). A potential
way to fix this problem is to penalize longer sequences.

6 Conclusion/Future Work

Over a very small test set of video vehicle detections, Seq-NMS performs as well as traditional
single-frame NMS, and is a promising method to improve YOLO’s video detections, both offline and
possibly in real-time.

For future work, there are a few directions we’d like to explore. The first direction is that we would
like to verify our results over a larger test set. Another direction is improving the speed of our code,
as the current Seq-NMS implementation is in Python and very slow. Some ideas for speeding up
the code include converting the code to Cython or another, faster language and paralellizing the
code. Another direction is to try and adapt Seq-NMS for real-time detection by converting it to a
streaming algorithm. We can also try combining YOLO with ideas from tubelets in order to improve
video object detection. One such idea is to introduce context constraints to YOLO by suppressing
false positive detections using nearby frames, as in (3), which can also potentially be adapted to
run in real-time. Another is to use consistency during the running of YOLO itself, and not just
in a post-processing step. For example, one idea is to use previous frames’ detections to improve
bounding box proposals, as in Galteri et al. (6)

7 Contributions

Jeffrey: Set up and managed AWS virtual machine instance, set up the darkflow and mAP Github
repositories, helped train machine learning models, implemented, tested, and evaluated sequential
non-maximal suppression, research, report writing

Boning: Data cleaning and preparation for model input, training YOLO on the UA-DETRAC dataset
Github: https://github.com/its-gucci

References

[1] S.-t. X. Zhong-Qiu Zhao, Peng Zheng and X. Wu, “Object Detection with Deep Learning: A
review,” arXiv, vol. abs/1807.00551, 2018.

[2] S. K. J. Mustansar Fiaz, Arif Mahmood, “Tracking Noisy Targets: A review of recent tracking
approaches,” arXiv, vol. abs/1802.02098v2, 2018.

B]1J.YX ZB. YT X C.Z.Z. W. R. W. X. W. W. O. Kai Kang, Hongsheng Li, “T-CNN:
Tubelets with Convolutional Neural Networks for Object Detection from Videos,” arXiv,
vol. abs/1604.02532v4, 2017.

[4] TL.PPR.M.B.H.S.J.L.S. Y. T. S. H. Wei Han, Pooya Khorrami, “Seq-NMS for Video
Object Detection,” arXiv, vol. abs/1602.08465v3, 2016.

[5] R. G. A. F. Joseph Redmon, Santosh Divvala, “You Only Look Once: Unified, real-time object
detection,” arXiv, vol. abs/1506.02640, 2015.

[6] M. B. A. D. B. Leonardo Galteri, Lorenzo Seidenari, “Spatio-Temporal Closed-Loop Object
Detection,” IEEE Transactions on Image Processing, vol. 26, 2017.

[71 T.X. W.0.]. Y. X. L. X. W. Kai Kang, Hongsheng Li, “Object Detection in Video with Tubelet
Proposal Networks,” arXiv, vol. abs/1702.06355, 2017.

[8] L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim, M. Yang, and S. Lyu, “UA-
DETRAC: A new benchmark and protocol for multi-object detection and tracking,” arXiv
CoRR, vol. abs/1511.04136, 2015.

[9] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv, vol. abs/1612.08242,
2016.

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

