Deep Reinforcement Learning for Classic Control
Tasks

Andrew Zhang
Department of Computer Science
Stanford University
andrewdu@stanford.edu

Abstract

Deep reinforcement learning has been shown to be very effective on well-defined
environments such as standard Atari games [1]. However, environments such as
OpenAl Gym’s classic control tasks are less explored. This study aims to present
and compare results on more abstract and robotic environments - Acrobot-v1
and CartPole-v0 from OpenAl Gym - using deep reinforcement learning imple-
mentations of Monte-Carlo vanilla policy gradients (VPG) and proximal policy
optimization (PPO). Although both algorithms had varying results across over one
thousand episode rollouts over multiple runs, VPG and PPO generally achieved
optimal reward thresholds on both environments. However, while VPG and PPO,
on averge, performed roughly equivalently on Acrobot-vl, PPO out-performed
VPG on CartPole-v0 by a decent margin in both mean reward as well as learning
speed every time.

1 Introduction

The goal of deep reinforcement learning is to combine standard reinforcement learning with neural
networks for improved performance. For familiar environments/tasks that have a well-defined reward
function such as Pong or Pac-Man (i.e. every dot collected gives one point), the problem is essentially
a solved one, wherein either an off-policy or on-policy method can be used to easily converge to
the optimal behaviour. However, for tasks that are seemingly more simple and abstract such as
classic control tasks, regular off-policy methods do not perform as well as on-policy methods due to
increased complexity of the problem and the more sparse nature of the reward. Motivated by this fact,
the objective of our study is to experiment with and demonstrate results exhibited by Monte-Carlo
vanilla policy gradients (VPG) and proximal policy optimization (PPO), two on-policy reinforcement
learning methods, on the classic control tasks of Acrobot-v1 and CartPole-v0 from OpenAl Gym.

Since we use Gym as the backend for representing each environment, we don’t need to do
much reformatting on our input/output data. Specifically, we model each VPG and PPO using
two neural networks, one denoting our current policy, and the other denoting the value function
that estimates the expected discounted sum of rewards at any given state. Hence, our inputs
come from Gym in tuples, representing variable factors within each environment, and our outputs
consist of a probability action distribution for the policy network and an expected discounted
return for the value network (for detailed explanations please refer to the Dataset and Features section).

The importance of the study is to show that while PPO also displays some variance in the

results, it generally learns at a smoother pace than VPG does. Additionally, we also want to show that
PPO and VPG both achieve decent reward thresholds across both classic control environments. On a

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



more abstract level, we hope that this study helps push reinforcement learning beyond the shadow
of supervised learning. Recent innovations in algorithms and computing power has enabled agent
training to happen at a much faster rate and at a much less arbitrary and "unintelligent”" manner. As a
result, we hope that reinforcement learning will eventually fold into the equation for the advancement
of truly artificially intelligent agents.

2 Background

Reinforcement learning methods fall into two categories: on-policy and off-policy learning. The main
difference between on-policy and off-policy is that off-policy learning, such as Q-learning, utilizes a
deterministic estimation policy updated based on future return. On the other hand, on-policy learning
is not deterministic, thereby encouraging the agent to explore and allowing for faster convergence at
the cost of introducing more variance. VPG is an on-policy method that aims to directly optimize the
policy generated by a neural network. Likewise, PPO, initially released by OpenAl in 2017, is also an
on-policy method that aims to some of the issues plaguing VPG and other on-policy methods. In these
contexts, we define an episode to be a run from start to completion, or until an event horizon, and
we denote each timestep as ¢. Subsequently, the policy is denoted as 7y (ay|s;), where 6 represents
the parameters in the neural network and a; and s; represent the action and state/observation at each
timestep.

3 Related work

First, we examine results presented using trust-region policy optimization (TRPO) by John
Schulman et al. [2]. TRPO aims to calculate the KL.-divergence between the new and old policy
and use that to determine a trust-region to update the policy. While this is efficient in that it
solves the issue of bad parameter updates in VPG, it is mathematically rough and difficult to
implement in practice. In the paper, the authors show results of different variants of TRPO on
the CartPole-v0 environment, all of which eclipse a reward threshold of 100. This is very similar
to running PPO on CartPole-v0 as PPO was based off of the trust-region principle introduced in TRPO.

On the other hand, Martin Riedmiller et al. [3] evaluated three variants related to VPG on
the CartPole-v0 environment. For their implementation of VPG, they utilized a similar algorithm to
our implementation of Monte-Carlo vanilla policy gradient involving sampling trajectories of the
episode and computing the baseline value estimate to optimize the policy network. However, instead
of using an Adam optimizer, they used RMSProp as the step-size descent method. Nonetheless, they
were able to see optimal results as well.

In the original paper introducing policy gradient methods by Richard Sutton et al. [4], the
authors make note of using function approximation instead of the discounted return to point in the
direction of the gradient. Likewise, our study makes use of this by using a neural network as a value
function approximator. As explained by the authors, the benefit introduced here lies in reducing the
potential variance exhibited by the random policy in VPG.

Douglas A. Aberden conducted a similar study but with a focus on the theoretical aspects
behind applying policy gradient methods to partially observable Markov decision processes [5].
Although he thoroughly presented proofs for policy gradient applications, since it was published in
2003, no graphical plots or results were presented for the relevant classic control tasks since Gym
was not around at that time.

Lastly, we examine work done using deep reinforcement learning in the continuous domain.
According to Yan Duan et al. [6], despite the simplicity of Monte-Carlo vanilla policy gradient, it is
still effective when optimizing for the "most basic and locomotion tasks" [6]. However, as we also
noted in our experiment, VPG commonly suffers from premature convergence to local optima, which
is the driving factor holding it back from performing as well as more advanced algorithms.



4 Dataset and Features

Due to the inherent nature of reinforcement learning, we do not have a set input dataset which is
divided into training, validation, and testing subsections. Rather, the input data for our models comes
from live observations from the environment that are solely dependent on the agent’s current action
taken (satisfying Markov property).

Acrobot-vl is a classic control environment that contains an isolated two-link pendulum
whose initial starting state is hanging directly downwards. The goal of the agent is to actuate
the inter-joint such that the end of the lower link is raised above a given height and the episode
ends when the agent succeeds or more than 500 timesteps have passed. The input observations of
Acrobot-v1 consist of six numbers representing the sine and cosine of each rotational joint as well as
the angular velocity for each link. The possible actions in this environment consist of only 41, 0, or
—1 torque on the joint between the two links. The reward is —1 for each timestep the episode plays out.

CartPole-v0 is also a classic control environment that contains a cart with a pole in the cen-
ter. From the initial state of the pole balancing upwards, the agent aims to keep the pole upright by
moving the cart left or right. The episode ends when the pole is more than 15 degrees from vertical,
or the cart moves more than 2.4 units from the center. Here, the observations include cart position,
cart velocity, pole angle, and pole velocity at tip, where the cart position must be a value between
—2.4 and 2.4 units. Similar to Acrobot-v1, the possible actions include O or 1, representing a push to
the left or right, respectively, and the only possible reward is 1 for each timestep the agent survives.

5 Methods

We sample by taking our current policy and running it through the environment until termination,
making sure to store the observations, actions, and rewards at each timestep. Using our stored
information, we calculate the discounted sum of rewards given by the following function [7]:

o0
i—1
thg ’Yl Tt
i=t

Monte-Carlo vanilla policy gradient (also known as REINFORCE) alternates between performing
samples and optimizing the loss function of its policy network and value network. Specifically, the
policy network takes in observations about the environment at the current timestep and outputs an
action for that timestep. Unfortunately, since we do not know the optimal action at each state, we
cannot treat this as a standard supervised learning problem. Rather, VPG optimizes the policy by
computing an advantage and multiplying it by the log-likelihood of our probability distribution to
ensure that actions with higher expected return receive higher probabilities and actions with lower
expected return receive lower probabilities:

LVTG(0) = Ellog(mg(ay|s)) A¢]

where £ represents the average over all timesteps and A; represents the advantage. Thus, the gradient
update function becomes:

VLVPG(G) = E[VGZOQ(WG (atlst))Ad]

To calculate the advantage, we calculate the discounted sum of rewards at each timestep as well as a
baseline estimate for the discounted return and subtract the two. Similar to the policy network, we
use a value network to compute the baseline that consists of a simple, one-layer neural network with
ten neurons that performs regression on observations and outputs the expected return from that state.
By subtracting the baseline estimate from the computed discounted return of the current episode, we
reduce the variance of our actual discounted return.

One major problem with VPG was the fact that due to the random nature of the policy
(sampling from action distribution rather than taking the argmax), it wasn’t difficult for the agent to
make one terrible move and push itself into an unfavorable parameter region upon which all future
updates would be dependent on and the agent may never recover. To address this, OpenAl introduced
two versions of proximal policy optimization, adaptive KL penalty and clipped PPO. In this study,



we chose to use the clipped PPO since, on average, it performs better than its counterpart. The goal
of clipped PPO is to clip the update between 1 — € and 1 + € to decrease the chance that the agent
makes bad updates. This bound serves as the equivalent of the trust-region in TRPO except it is
much easier to implement since the only major difference between PPO and VPG lies in correctly
modifying the objective function and its dependencies to the one shown below [1]:
LPPO(9) = E[min(ry(0)As, clip(r,(0),1 — €,1 + €) Ay]
7o (atst)

0,4 (at]st)’
function sets the gradient to zero once the ratio breaches the bounds. By clipping the probability

ratios, the agent is penalized for moving outside of the interval, and by taking the minimum of both,
the final objective ensures a lower bound on the unclipped objective.

where 7,(0) represents the ratio between the new and old policies, and the clipping

6 Results and Discussion

The hyperparameters for this project (both VPG and PPO) included: the number of neural network
layers for both the policy and value networks, the number of neurons for each layer, the learning
rate (), the discount factor (vy), the clip ratio, and the number of episodes. While I considered
the effect in the varying results using different hyperparameters, the major factor for choosing the
optimal hyperparameters was to simply use values from existing architecture. The reasoning behind
this choice is because reinforcement learning is unlike other types of learning in that agent learning
hyperparameters transfer well, and as long as the learning rate and the discount factor are not far-
fetched, the agent is guaranteed to reach a good reward threshold in the long run. Thus, we used two
hidden layers and 32 neurons for the policy networks, one hidden layer and ten neurons for the value
network, a = 0.01, v = 0.98, clip ratio = 0.2, and 1000 episodes to give the agent time to learn
while not over-committing to failing trials.

VPG _CartPole-v0

episodes

Figure 1: VPG results on CartPole-v0

As we can see from the above graph, VPG performs well on CartPole-v0, exceeding the 100 reward
threshold with an overall, relatively smooth learning curve. Consequently, the small dips in the graph
demonstrate the high variance of this on-policy method. In fact, while all the VPG trials on CartPole-
v0 were successful in getting the agent to learn, a majority of them did not have monotonically
increasing learning curves.

PPO_CartPole-v0

ward

average re.

episodes

Figure 2: PPO results on CartPole-v0

In comparison, PPO’s learning curve was generally much smoother than that of VPG. Thus, not
only did PPO, on average, exceed VPG in average reward threshold, it also learned at a better pace.
However, due to the random nature of on-policy methods, PPO can also exhibit relatively poorer
results.



PPO_Acrobot-v1

00
episodes

Figure 3: PPO results on Acrobot-v1

Here, in Figure 3, we show results of PPO on Acrobot-v1. Although the agent started to learn well,
it ended up getting caught in a bad saddle point due to an unfavorable parameter update. Even so,
PPO still demonstrated decent results across 1000 iterations, and over many trials, these imbalances
become more or less outliers as PPO scales better than VPG.

VPG_Acrobot-v1

00
episodes

Figure 4: VPG results on Acrobot-v1

In contrast, here is a baseline comparison on Acrobot-vl by VPG, where the agent begins sloping
out at around —120. However, it should be noted that due to VPG’s relatively large variance, many
of our trials on both CartPole-vO and Acrobot-v1 ended with lower reward thresholds and slower
learning due to the agent being stuck in bad parameter regions. In fact, without a baseline to subtract
from the discounted sum of rewards, VPG will display even more variance due to the random nature
of the policy [1]. Unfortunately, since both VPG and PPO are on-policy, they suffer from sampling
inefficiency as they forget data very fast in order to avoid the introduction of a bias to the gradient
estimator, thus making numerous rollout samples a necessity.

7 Conclusion

In conclusion, while PPO may sometimes not out-perform VPG (comparing Figure 4 and Figure 3),
on average, an agent learning by PPO exhibits better learning and reward thresholds than an agent
learning by VPG on classic control environments. That being said, it seems that on classic control
tasks, there is not an extremely significant difference between the results displayed by VPG and
those of PPO as both tend to perform well in the long run. While it may not be apparent from the
results of our study, compared to off-policy methods, policy gradients such as VPG and PPO are
more advantageous in the continuous space because off-policy methods such as Q-learning require a
full scan of the action space and thus are very computationally expensive.

8 Future Work

We eventually aim to refine and modify VPG and PPO implementations to work for continuous
OpenAl Gym environments. Then, we can implement trust-region policy optimization (TRPO) and
twin delayed deep deterministic policy gradients (TD3) and compare results to ones from VPG and
PPO on both continuous and classic control tasks. Lastly, using Pickle and Python MPI packages, we
would like to develop parallelized implementations for faster episode rollouts and agent training.

9 Code

All project code at (invite sent to ¢s230 github):



https://github.com/andrew230/cs_230_final_project

10 Contributions

Andrew Zhang initiated the project, wrote the pertinent code, conducted the training and testing,
provided graphical figures, and typed up the project, proposal, milestone, and final report.

References

[1] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov, “Proximal Policy Optimization
Algorithms,” arXiv, 2017

[2] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, Pieter Abbeel, "Trust Region Policy
Optimization," Advances in International Conference on Machine Learning, 2015

[3] Martin Riedmiller, Jan Peters, Stefan Schaal, "Evaluation of Policy Gradient Methods and Variants on the
Cart-Pole Benchmark," Advances in IEEE International Symposium on Approximate Dynamic Programming
and Reinforcement Learning, 2007

[4] Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour, "Policy Gradient Methods for
Reinforcement Learning with Function Approximation," Advances in Neural Information Processing Systems,
2000

[5] Douglas Alexander Aberdeen, "Policy-Gradient Algorithms for Partially Observable Markov Decision
Processes," Advances in Australian National University Open Research Reposity, 2003

[6] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter Abbeel, "Benchmarking Deep Reinforcement
Learning for Continuous Control," Advances in International Conference on Machine Learning, 2016

[7] OpenAl, “Spinning Up in Deep RL,” 2018, https://blog.openai.com/spinning-up-in-deep-rl/



