Unrestricted Adversarial Defending Deep Neural Network

Qiwen Wang and Xinshuo Zhang

I. INTRODUCTION

Although known to be robust to random per-
turbations of the input, deep neural networks can
be quite vulnerable to adversarial perturbations,
which are designed specially to fool the model into
making blatant errors[1]. One even more annoying
fact is that DNN even report high confidence on
such errors. Unbelievable as it may seem, a single
specific rotation on a vulture picture can fool the
neural network into reporting a cat picture instead.
However, it also inspires us to reflect on such loop-
holes and try to train a more holistic DNN to avoid
such errors, which leads to our projectunrestricted
adversarial defending deep neural network.

Given the image classification realm, usually the
goal of the adversarial attacks is to add a tiny
perturbation to the image, which lead to misjudg-
ment of a particular model yet keep the picture
classifiable to human eyes[2]. In our study, we
combine several images processing methods and
the state-of-art adversarial defending methods. We
test these methods on a binary classification task to
classify handwritten digits “6” and “7”. The final
decision is based on the majority vote of all of
these methods.

Github link: https://github.com/qwang70/cleverhans.

II. DATASET

To train and test our model, we use the ‘MNIST’
handwritten digit dataset. Because our task is to
only classify digits “6” and “7”, we take the subset
of the dataset, and only train and test on digits
”6” and 7. We collect 12,000 handwritten images
for training, developing, and testing. Each image
is in black and white, with size 28 x 28. As
for testing, we collect 2000 images and attack
these images with different attacking algorithm
such as FGSM and JSMA, etc. To make sure our
training and testing is unbiased, the data for our
training, developing, and testing set have the same

distribution, which means the numbers of digit
“6”s and “7”’s in each set are roughly equal.

III. METHOD AND RESULT
A. Related work on Attacks

In this section, we introduce the attacking meth-
ods we use to test the model.

1) Spatial Grid Attack: The spatial grid
attack[7] is based on the observation that simple
image rotation and transformation can leads to
image classification. The attack is composed of
three steps: a) iteratively take steps in the direction
of the loss functions gradient to locally maximizes
the loss of the classifier, b) use grid search to
explore possible parametrization of the attack, and
find the parameter that makes the classifier to give
a wrong prediction, and c¢) randomly sample k
attack parameters and choose the parameter that
the model performs the worst.

The parameters involved in the spatial grid at-
tack are rotation degree 6 and pixel transformation
(du, dv). Let T'(z; 0u, év,) be the transformation
of x and y be the correct label of z. Then the
problem can be formalized as

max L(T(x;du,év,0),y).

du,ov,0
2) JSMA: Basically, what JSMA does can be
summarized into two steps. Step one, we find
input and output pairs where output includes every
class other than the labeled one and we compute
the Jacobian component corresponding to each
pair. The Jacobian matrix indicates changing which
pixel can have the most significant influence on
the output by the model. Step two, generate the
adversarial input based on the Jacobian matrix.
Here, since our input images are “6” and “7”,
JSMA takes input “6” and output class “7” as a
pair and compute Jacobian matrix for such pair.
Based on the matrix, JSMA changes a few pixels,
namely the several white dots in Figure 1, which

C6b6b6bEbLb6b6G6EE
T2 ZIZ2I]I T2

Fig. 1.

& 6
7 7

MNIST handwritten digit dataset of “6”s and “7”’s

Fig. 2. The raw images and the images after JSMA attack. The
images on the left are classified as “6”, and images on the right are
classified as “7”.

successfully fool the network to classify the “6”
into “7” yet it remains “6” to human eyes. Figure
2 is an example of the result of JSMA attack.

3) Fast gradient sign method: Goodfellow et
al.[8] proposed the fast gradient sign method
(FGSM) to generate adversarial examples.

Fast Gradient Step Method (FGSM) adds some
weak noise on each step, trying to maximize the
error and drifting the images classification towards
the other class, while keeping the image look
similar to human. In each step, FGSM performs

x+e€-sgn(VzL(0,z,y)).
We use the cross entropy

—(y(p) + (1 =y)(1 —p))

as our loss function, where y is a binary indicator
of the class label, and p is the predicted probability.

B. Baseline Models

We train and test our baseline model by 1) not
applying any image processing method, 2) only
pre-processing images but not using any adver-
sarial dense method during the training, and 3)
training a model using adversarial training. The
baseline models are evaluated by looking at accu-
racy, recall, F1 score, and the confusion matrix.

C. CNN model without pre-processing

We first train a two-layer convolutional model
with max-pooling for 10,000 iterations. We then

test our model on a clean dev set, and dev set that is
attacked by three individual methods, spatial grid
attack, JSMA and FGSM. We achieve a near 100%
accuracy on the clean dev set, but we have 0%
accuracy for the three attacks. The result is reason-
able, because these attack algorithms are designed
specifically to let the image be misclassified.

TABLE I
BASELINE RESULT FOR USING CNN WITH ATTACKED IMAGES

Precision Recall F1
Clean 1 1 1
Spatial Grid 0 0 0
JISMA 0 0 0
FGSM 0.722 0.746 0.733

D. CNN model with pre-processing

1) Gaussian Blurring: We apply Gaussian blur-
ring on the training image to train the model.
Usually, a modern image uses 8 bits per pixel,
which means all information below 1/255 of the
dynamic range is discarded, i.e. the precision of
the features is limited. Such feature decides that
any perturbation smaller than the precision should
not be detected. However, as the dimension of the
weight vector grows, even though the perturba-
tion remains unchanged, the changes in activation
caused by the perturbation grows. This is a simple
explanation why adversarial model works and by
applying Gaussian blurring, hopefully we can av-
erage out such changes in a image. The model is
trained using the same CNN design as in the first
baseline. When testing the model, after applying
the attacks to the testing image, we also apply the
same Gaussian blurring with the same parameter .
A Gaussian blur is the result of blurring an image
with a Gaussian function and is typically used for
reducing image noise and reducing detail.

By applying Gaussian blur, that is
2 + y?

20_2)’
the attack on the image can be dispersed. Then
the same evaluation metrics are used to test the
result. We first train the CNN model after applying
Gaussian blurring, than test on attacked images
that are applied Gaussian blurring. The result in
Table II is still not promising on spatial grid and
FGSM attack, but is better than the first baseline.

G(z,y) = exp(—

TABLE II
EVALUATION RESULT FOR THE CNN MODEL WITH IMAGE
PRE-PROCESSED BY GAUSSIAN BLURRING WITH 0 = 2.

Precision Recall F1
Clean 0.999 1 0.999
Spatial Grid 0.535 0.627 0.577
FGSM 0.761 0.549 0.638

2) Feature Squeezing: Proposed by Xu et al.[9],
this is another spatial smoothing method that re-
duces the color bit depth of each pixel. Since the
input spaces of the images are often unnecessarily
large, and provide the adversarial attacking meth-
ods opportunity to construct adversarial example,
this approach squeezes the features and provides
less degree of freedom to be attacked. It runs a
sliding window on each pixel to substitute color
with median value in the sliding window. This
median selection can effectively remove sparsely-
occurring black and white pixels, whilst preserve
edges of objects. We first train the CNN model
after applying Feature Squeezing, than test on at-
tacked images that are applied Feature Squeezing.
The result in Table III performs better than the
baseline without image pre-processing, and per-
forms better on FGSM compared to using Gaus-
sian blurring.

TABLE III
EVALUATION RESULT FOR THE CNN MODEL WITH IMAGE
PRE-PROCESSED BY FEATURE SQUEEZING.

Precision Recall F1
Clean 0.999 1 0.999
Spatial Grid 0.483 0.633 0.548
FGSM 0.924 0.931 0.928

E. CNN Model Trained with state-of-art Defend-
ing Algorithms

1) FGSM Defending: One of the attacks we’re
aiming to defend the category of targeted attacks
that maximize the probability of targeted adversar-
ial class. According to Szegedy et al.[5], training
on a mixture of clean images and adversarial
attacked images can generalize neural network to
a certain point. Therefore, here we train the model
while applying FGSM attack on training set, and
test the model with other attacks.

The result for detecting the FGSM attack is
promising, because the model is trained based on
it, but we make the assumption that it can also
detect other attacks in the same category.

We trained the model by generating FGSM
example and defending. Then we tested the model
on images with attacks without pre-process the
images. The result is shown in Table IV. Since
the model is trained based on FGSM attack, the
testing result for the FGSM attack outperforms the
previous image processing approach

TABLE IV
EVALUATION RESULT USING FGSM DEFENDING ALGORITHM.

Precision Recall F1
Clean 0.999 1 0.999
Spatial Grid 0.496 0.672 0.57
FGSM 0.99 0.981 0.986

2) Black-box: Unlike other methods mentioned
above, which apply gradient method through direct
access to real network gradient factors, here black-
box construct an implicit approximation to the
network gradient, namely the so-called substitute
model, through local search technique[6]. We try
to minimize the probability that the input image
is classified as its labeled class by computing
an implicit approximation gradient of the current
image. In each iteration of the local search, we
select a set of pixels based on the pixels perturbed
in the previous iteration, using the pixel selection
formula:

(Pe, Py) = U U

{(a,b)e(P% Py)i-1} {z€[a—d,a+d],yc[b—d,b+d]}

After selecting, we apply perturbation function
on pixels selected. See perturbation function be-
low:

[Z()’”’y)(b, u,v) =
{<I<b,u,v>>,

ifzr#uory#v

p x sign(I(b,u,v)), otherwise

After several rounds, we get a set of images in
which different pixels are perturbed and we sort
these images in descending order of how much
decrease it leads to the original classification prob-
ability, which indicates how robust an adversarial
image the corresponding pixels contributes to.

Table V shows the result running test example
on black-box algorithm trained model. The algo-
rithm performs slightly worse on clean image, and
performs very poor on FGSM attack.

TABLE V
EVALUATION RESULT USING BLACK-BOX DEFENDING
ALGORITHM.
Precision Recall F1
Clean 0.995 0.985 0.990
Spatial Grid 0.526 0.502 0.514
FGSM 0.015 0.014 0.015

FE. Integrated Adversarial Defending Model

As stated before, most attacks are crafted spe-
cially to cause deep learning algorithms to mis-
classify. Reflecting upon this feature, a conclusion
drew directly from the majority vote can be mis-
leading. Since a particular attack is very likely to
be only detected by the network which is trained
on the dataset attacked by the very same attacking
algorithm and thus fool all the other networks
to vote for it instead of against it, the majority
vote may just output the contrary result. Under
this circumstance, training another neural network
using the output of all the neural network we
trained for adversarial attack defending as input
seems a good way to go.

1) Train models with image pre-processing and
defending algorithms: From Section III-D and III-
E, we found that by pre-processing images or
by using the state-of-art defending algorithms, we
are able to increase the classification accuracy for
some of the attacks. It is nature to that combining
these two approaches can lead to a better result. In
the training phase, we first apply image processing
to the input images, then use FGSM or black-box
defending algorithms to train models based on the
processed image. Since we experimented multiple
image processing approaches and defending meth-
ods, with different combinations, we ended up with
6 models in this step. The 6 trained models are
described in Table VI.

2) Integrate trained models into one adversarial
defending model: Since these models can differ-
entiate attacks in different extent, for some un-
known attacks, it is likely that some models can
classify the attack better than others. We trained

TABLE VI
MODELS TRAINED WITH IMAGE PROCESSING AND DEFENDING
ALGORITHM COMBINATION

Model Model Model Model Model Model
1 2 3 4 5 6
Pre- Clean Gaussian Feature Clean Gaussian Feature
process| Image Blur- Squeez- Image Blur- Squeez-
ring ing ring ing
Defend| FGSM FGSM FGSM Black- Black- Black-
Method box box box
G 0 L ¢ RN
e
Fig. 3. Integrated Adversarial Defending Model Architecture for
Training

an integrated model by using the logits of each
of the 6 models as features, training a multi-layer
perceptron (MLP), and using the original labels of
the training images as the labels of the integrated
neural network. The intuition behind the network is
to find the most similar logit features of the trained
image to the logit features of the attack image.

Since the problem is a binary classification task,
every model has two logits before outputting the
classification label. Each input data for training the
MLP model has 2 x 6 = 12 features. Thus the
input feature is of size RV*!2 where N = 12000
is the number of training data. The MLP model
has 2 hidden layer with 256 neurons, and 1 output
layer that maps the data into 2 classes representing
“6” and “7”. Figure 3 and 4 show the structure
of the Integrated Adversarial Defending Model for
training and evaluating.

G. Model Result

We applied image pre-processing methods and
Adversarial defending algorithms on 12,000 input
images of handwritten digits “6” and “7”. After we
trained 6 individual models with a combination of

Fig. 4. Integrated Adversarial Defending Model Architecture for
Evaluating

the above approaches, we concatenate the logits
of each model as features and trained the final
integrated model as shown in Figure 3. Then we
evaluate the 2,000 images on the model by first
applying attacks, then applying image processing.
We passed the image to 6 models, to get the
features for the integrated model. Then the final
label is decided by the integrated model (Table
VII).

TABLE VII
EVALUATION RESULT USING TESTING DATA ON INTEGRATE
MODEL.

preprocess attack acc precision recall f1
clean none 0.998 0.996 1 0.998
spatial_gr{d 0.51 0.522 0.722 0.606
fgsm 0.019 0.027 0.026 0.027
gaussian | none 0.999 0.999 1 0.999
spatial_grid0.519 0.529 0.734 0.615
fgsm 0.472 0.315 0.017 0.031
squeeze | none 0.998 0.998 0.999 0.998
spatial_grid 0.5125 0.525 0.715 0.605
fgsm 0.232 0.056 0.03 0.039

Compared to the baseline and individual models
we generated, notice that classifying FGSM attack
only performs better than using the black-box
model. From Table V, the black-box method per-
forms badly on FGSM attack. It is likely that MLP
puts considerate weight on black-box models, but
since the FGSM performs so badly on black-box
model, and we don’t train image based on the
attacked image, the final classification for FGSM
attack is bad.

Despite of the fact, the precision, recall fl of
classifying FGSM attacked images that is clean,
Gaussian blurred, and feature squeezed is better
than only using the black-box model. Also per-
forming Gaussian blurring and feature squeezing
gives better result than without perform image pre-
processing. It verifies that image pre-processing is
useful for the adversarial defend.

The accuracy, precision, recall and f1 score for
classifying spatial grid attack with different image
pre-processing are roughly the same. Applying
Gaussian blurring and squeezing on the testing
images gives slightly better result than using the
clean image. Also the result from the integrated
model is much better than purely using FGSM
defending and is slightly better than purely using
the black-box defending algorithm.

IV. CONCLUSION

In conclusion, we can’t prove that our new
model doesn’t significantly perform better than
any other individual model. We have shown that
the image pre-processing and using the state-of-art
defending models can improve the classification
performance, but we can only conclude that our
model performs better than the individual model
with the worst performance.

In the future work, instead of using logits of size
2 as feature, we can explore using more logits even
for the binary classification. In our work, the MLP
only uses two basic fully connected layers. We can
improve the model by substituting the final MLP
model with a neural network with more compli-
cated structure. Mostly importantly, we want to
try more combination of image processing and
defending algorithm, and select some of them that
perform well for the integrated model. One of the
problem we have is to integrate all the models we
have. Some of them might only add little useful
information to the overall model, and increase the
dependency between features.

V. CONTRIBUTION
Qiwen Wang and Xinshuo Zhang contribute to
the project equally.
REFERENCES

”cleverhans v2. 0.0: an
library” arXiv preprint

[1] Papernot, Nicolas, et al.
adversarial machine learning
arXiv:1610.00768(2016).

[2] Samangouei, Pouya, Maya Kabkab, and Rama Chel-
lappa. ”Defense-GAN: Protecting classifiers against ad-
versarial attacks using generative models.” arXiv preprint
arXiv:1805.06605 (2018).

[3] Google. Unrestricted Adversarial Example.
https://github.com/google/unrestricted-adversarial-examples

[4] Tensorflow. Cleverhans. https://github.com/tensorflow/cleverhans

[5S] Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya,
Bruna, Joan, Erhan, Dumitru, Goodfellow, Ian J., and Fer-
gus, Rob. Intriguing properties of neural networks. ICLR,
abs/1312.6199, 2014b. URL http: //arxiv.org/abs/1312.6199.

[6] Narodytska, Nina, and Shiva Prasad Kasiviswanathan. ”Sim-
ple Black-Box Adversarial Attacks on Deep Neural Net-
works.” CVPR Workshops. Vol. 2. 2017.

[7]1 Engstrom, Logan, et al. ”A rotation and a translation suffice:
Fooling cnns with simple transformations.” arXiv preprint
arXiv:1712.02779 (2017).

[8] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. CoRR,
abs/1412.6572, 2014. URL http://arxiv.org/abs/1412.6572.

[9] Xu, Weilin, David Evans, and Yanjun Qi. “Feature squeezing:
Detecting adversarial examples in deep neural networks.”
arXiv preprint arXiv:1704.01155 (2017).

