Structural Damage Classification for Post-Earthquake Recovery
(Computer Vision)

Wen-Yi Yen! and Mengfan Zhang!

Abstract— Recent studies in the field of structural engineer-
ing raise eyes on the importance of post-earthquake recovery
in urban areas. With the modern remote sensing technology,
building and structural component images become accessible
via aerial drones or related devices. In this article, the state-
of-the-art deep learning technology for a civil engineering
application is implemented, namely recognition of structural
damage from images. In order to avoid overfitting, transfer
learning is introduced and applied. Eight structural damage
classification problem are tackled. Several convolutional neural
network models are combined together and yield a promising
recognition result.

No spalling Spalling

Fig. 3. Classification of: no spalling / spalling.

I. INTRODUCTION
Steel Others

Structural health monitoring and rapid damage assessment
after natural hazards and disasters have become an important
focus in civil engineering [1], [2], [3]. Meanwhile, artificial
intelligence technologies are developing rapidly, especially
in applications of deep learning. The big potential in deep
learning application in structural engineering prompts the
Kaggle Competition - "PEER Hub ImageNet Challenge”
held by University of California at Berkeley [4]. Totally 8
tasks are raised:

Fig. 4. Classification of: steel / others.

No collapse Partial collapse Collapse

o Task 1: Scene level identification. See F ig. 1. Fig. 5. Collapse check: no / partial collapse / collapse.
o Task 2: Damage state check. See Fig. 2.

o Task 3: Spalling condition check. See Fig. 3.

o Task 4: Material type identification. See Fig. 4. f_A\. . !

o Task 5: Collapse check. See Fig. 5. ﬁ

« Task 6: Component type identification. See Fig. 6.

o Task 7: Damage level detection. See Fig. 7. Beam Coldmi Wall Ee
o Task 8: Damage type detection. See Fig. 8. w

Fig. 6. Classification of: beam / column / wall / else.

Pixel Level Object Level Structural Level
Fig. 1. Classification of: pixel / object / structural levels. No damage Minor Moderate Heavy
damage damage damage
l i “ Fig. 7. Damage level detection: no / minor / moderate / heavy damage.
i e 2
Undamaged Damaged s
Fig. 2. Classification of: damaged / non-damaged. No damage Phsxomal Shear Copilinad

damage damage damage

IW.-Y. Yen - Student in CEE, SUNetID: wyen

M. Zhang - Student in CCRMA, SUNetID: zhangmf Fig. 8. Classification of: no / flexural / shear / combined damage.

Convolutional neural network (CNN) has been at the heart
of spectacular recent advances in deep learning. Compared
with traditional computer vision and machine learning ap-
proaches, CNN no longer needs hand-designed low-level
features or so-called feature engineering where the millions
of parameters inside a typical network are capable of learning
amounts of mid- to high-level image representations with
input data obtained from a pixel matrix (tensor). Another
unique characteristic of deep CNN is its depth of archi-
tecture. Many well-designed CNN architectures, such as
VGGNet [5], GoogleNet [6] and Deep Residual Net [7]
(just to name some) demonstrated the great performance
improvement with substantially increasing the depth.

In this article, the pretrained ImageNet models and transfer
learning are employed in our problems. The pretrained mod-
els have powerful generalization abilities for it can performs
well in different data sets. The major advantage of transfer
learning is that it can relax the requirement that training a
deep CNN needs a large number of data, through tuning part
of the parameters from pretrained model in source domain
with few labeled data in target domain, which might lead to a
good performance for the target data set. In transfer learning,
all parameters in the net before the fully connected layers
are frozen, features are extracted from the last layer, then
the fully connected layers are added to train the extracted
features. After that, parts of the networks are frozen and the
remaining parameters are retrained with gradient descent and
back propagation.

II. RELATED WORK

In recent studies by Gao [1], some similar tasks such
as damage classifications and component recognitions are
presented. The main method of tackling the probelms in the
paper is transfer learning using the pretrained VGG16 model.
Initially, we approach the competition tasks following the
outlines of the paper. However, our work diverges with it in
the final phase, which includes the combination of several
ImageNet models and the data augmentation using the fancy
principal component analysis (fancy PCA).

III. DATASET AND FEATURES

The dataset presented in this paper is directly provided by
the PEER PHI Competition. The data amount and training /
validation split is shown in Table I. Each task has different
challenges, such as highly imbalanced data is a bug issue
to overcome. In some cases that focus on concrete cracks
and spalling, the implementation of fancy PCA could help
increase accuracy.

IV. METHODS
A. Initial Phase - Transfer Learning Using VGG16

In our tasks, only few data is presented. Transfer learning
is a very effective tool to address the lack of data. In the
CNN, parameters in shallower layers represent low-level
features, such as color, texture and edges, while parameters
in deeper layers attempt to capture more complicated and
abstract high-level features. Therefore, the major objective

TABLE I
THE COUNT OF IMAGES IN EACH TASKS

class 0 class 1 class 2 class 3
Train Validation | Train Validation | Train Validation | Train Validation
Task1 5370 500 5210 500 5330 500 - -
Task 2 2680 500 2220 500 - - - -
Task 3 1500 100 1600 90 - - - -
Task4 1200 310 2500 320 - - - -
Task5 200 40 180 40 36 16 - -
Task6 200 40 750 50 1280 40 200 50
Task 7 1450 50 280 40 420 40 300 40
Task 8 1450 50 150 50 350 50 470 50

of transfer learning in CNN is to make use of parameters
in a well-trained model from the data set in source domain
to help with training the data set in the target domain. The
original training data set for a pretrained VGG-16 Model
is ImageNet, which includes thousands of images related to
buildings, bridges, pillars, walls, etc., belonging to the civil
engineering field. Therefore, for our classification tasks in the
domain of structural engineering, source and target domains
are assumed to be related. Moreover, from the perspective
of our task objectives, the component type classification is a
similar but easier task than that of the ImageNet classification
problem, since it reduces the 1,000 classification to a binary
one.

Configuration and procedure for normal training of the
whole CNN, feature extraction, and fine-tuning are illustrated
in Fig. 9. Moreover, since we focus on a small data set,
while implementing fine-tuning, data augmentation tricks are
used to avoid overfitting, such as zoom in/out, translation,
reflection, rotation, and color changes. To implement the

Convolution2D Convolution2D Convolution2D
Conv Block 1: | ["convolution2n Convolution2D Convolution2D
64 3x3 filters
MaxPooling2D MaxPooling2D MaxPooling2D
¥ ¥ -
. Convolution2D Convolution2D Convolution2D
Conv Block 2:
e e = = 5 5
128 3x3 filters Convoluf 2D Convolution2D Convolution2D
MaxPooling2D MaxPooling2D MaxPooling2D ‘
+ +
Convolution2D Convolution2D Freezing
arameters
5 Convolution2D Convolution2D P
Conv Block 3:
256 3x3 filters | [Convolution2n Convolution2D Freezing
MaxPooling2D MaxPooling2D parameters MaxPooling2D
[convolution2p | [convolution2p | Convolution2D
Conv Block 4: | [Convolusion2 | [Convolution2p | Convolution2D
5123x3 filters | [Convolution2 | [Convolution2p | Convolution2D
[MaxPooling2p | [Maxpooling2p | MaxPooling2D
! + +
¥ ¥
Convolution2D Convolution2D Convolution2D
Conv Block 5: | [Convolution2D Convolution2D Convolition2D)
5123x3 filters | [Convolution2D Convolution2D
- Retrain
MaxPooling2D MaxPooling2D MaxPooling2D.
; T parameters
L 2 h 4 v
Flatten Bottleneck feature
Densc [pemse |
Flatten Train
oo [oae |/ parameters
o Softnax
z v
Softmax
(a) (b) (©)

Fig. 9. Configuration and procedure of transfer learning.

transfer learning in deep CNN, we first extract the bottleneck
feature for CNN. Convolution operations are only performed
once in the feed forward procedure. The outputs of the last
layer are taken as the bottleneck feature of the training
data. Then the fully connected layers are added to fix the
classification problem. Extracting the bottleneck features
greatly decreases the training time and number of epochs,
because it only trains the bottleneck features using a shallow
fully connected neural network, instead of training from top
to bottom through large number of conv layers for multiple
times. After that, we use fine-tuning to retrain some parts of
the CNN. As mentioned before, conv blocks in the beginning
represent low-level features, which might be similar for both
source and target domains, and the objective of tuning the
last several conv blocks is to adjust the mid- to high-level
features to the target domain.

B. Final Phase - Combination of Imagenet models, Fancy
PCA and CAM

In the final phase of the competition, our team combined
several ImageNet pretrained models and average their results
at the softmax layers. This is an experiment inspired by what
happened in the past Netflix Competition - the rank second to
last groups averaged their results and turned out to predict as
good as the first-ranking group. Thinking ahead, the networks
”deeper” than the VGG16 model would presumably improve
the performance of classifying high-level information, such
as task 5: no / partial collapse / collapse.

Fancy PCA is a scheme that performs PCA on sets of RGB
pixels throughout the training set by adding multiples of
principles components to the training images. It is believed to
be effective in “texture-wise” classification problems. Among
the tasks we worked on, task 2: damaged / non-damaged
and task 3: spalling / no spalling are examples that texture
changes significantly between classes. In order to visualize
the effectiveness of this particular data augmentation method,
the class activation maps are used. Class activation maps
(CAM) are a simple technique to show which regions in
the image are relevant to the class. This approach helps us
understand whether fancy PCA intensifies the characteristics
of the classes or misleads the classifications.

V. EXPERIMENTS, RESULTS AND DISCUSSION

A. Initial Phase - Transfer Learning Using VGG16

In this phase, our team do parameter tuning on: the number
of Conv blocks to freeze, the batch sizes, the dropout rates,
L2 regularization variables, data augmentations, learning
rates and decaying variables, and Adam and SGD algorithm
parameters. To visualize parts of the experiment, please see
Fig. 10 and Fig. 11. It is found that different tasks yields very
different optimal variables. In this case only task 7 is shown,
but the major point is to save the model that maximizes F1-
score during runtime. With that saved model, we then make
predictions for initial submissions for the competition.

Training accuracy, task 7

0.9
>, 0.8
O
o
=
O
g 0.7 —— baseline
dropout = 0.6
—— no L2
— release 2 blocks
0.6 - T - - -
5 10 15 20 25 30
Epoch
Fig. 10. An example result of hyperparameter tuning - task 7 training
accuracy.
Validation accuracy, task 7
0.85
0.80 1
Lé 0.75 1
3
v
& 0.70 —— baseline
dropout = 0.6
0.65 - —— no L2
— release 2 blocks
0.60 T T T r -
5 10 15 20 25 30
Epoch
Fig. 11. An example result of hyperparameter tuning - task 7 validation

accuracy.

B. Final Phase - Combination of Imagenet models, Fancy
PCA and CAM

In the final phase of the competition, we experiment on
13 pretrained models in ImageNet, including: ResNet50, In-
ceptionV3, InceptionResNetV2, Xception, VGG16, VGG19,
DenseNet121, DenseNet169, DenseNet201, MobileNet, Mo-
bileNetV2, NASNetMobile, and NASNetLarge. It is found
that by averaging all the results on the softmax layers,
the performance can improve up to 4% as compared to
our initial results experimented on VGG16. One interesting
thing to note is the “DenseNets” systematically perform
worse than other models. We think this is due to the fact
that the architectures are deeper and harder to train on
small datasets, as shown in Fig. 12. With this in mind, we
excluded the DenseNets and proceed. Another interesting
thing to note is - for task 5, VGG16 and VGG19 have worse
performance compared to the other pretrained models. The
explanation for this is VGGs are shallower among the models
we implemented.

One important data issue to tackle is the highly imbalanced
characteristic. For instance, the task 5 data in 3 classes has
image counts: (240, 220, 52). This imbalancement caused
predictions to lean over only to output the first two classes.
We cope with this problem by oversampling the data in the

Validation accuracy, task 5

Training accuracy, task 5

ResNet50
NASNetMobile
VGG19

VGG16
NASNetLarge

20 40 60 s 100 ‘0 20 40 60 80 100 InceptionResNetV2
Epoch Epoch

MobileNet
Training loss, task 5 lalidalion loss, task 5 MobileNetV2
‘ | *I“ ‘ [\ 201
} | | DenseNet121
. g2 Il InceptionV3
Xception
DenseNet169

ERRRERN

*° f\'«y’wi—;«—vwfﬂﬁr-

Loss
rr"
s
545
Los
|]

40
Epoch Epoch

Fig. 12. Task 5 multi-model training, DenseNets are harder to train.

third class and also include more intensive data augmenta-
tions. The results show about 1% improvement in the test
prediction, although the validation accuracy drops a little.
This suggests that the distribution of the test images is
slightly different from the data we received. The experimen-
tal results are shown in Fig. 13.

Training accuracy, task 5 Validation accuracy, task 5

—— NASNetLarge
—— MobileNetV2
— InceptionResNetV2
— ResNet50
B 1 —— NASNetMobile
Validation accuracy, task 5 —— MobileNet
~— InceptionV3
— VGG16
Xception
— VGG19

4 6 80 100 0

a0 60 4 60
Epoch Epoch

Fig. 13. Task 5 multi-model training, the top images represent the original
training, and the bottom images are those with oversampled data.

The particular data augmentation approach - fancy PCA
is implemented in attempt to improve further on the tasks
with sufficient data. With bear eye, it is hard to tell the
difference between the original images from those adjusted
using fancy PCA. Thus, we implement class activation maps
to visualize the improvement or shortcoming of the fancy
PCA approach. It is found that texture-wise” tasks, such
as task 2: (damaged / non-damaged) and task 4: (spalling /
no spalling) yield up to 1% improvement using fancy PCA.
Other tasks with high-level characteristics, such as task 5: (no
/ partial collapse / collapse) and task 8: (no / flexural / shear
/ combined damage) are sometimes misleaded by the change
in pixel colors. This observation is presented and described
in Fig. 14.

Finally, the best predictiction of all 8 tasks are shown from
Fig. 15 to Fig. 22. Overall, the predictions stands at about
15% to 20% among all the competitors.

VI. CONCLUSIONS

In a practical aspect, the authors have implemented
VGG16 for transfer learning in the initial phase of the
competition for 8 tasks. Then, multi-model learning is carried
out in the later phase with 13 ImageNet pretrained models.

Texture Type

Non-Texture

Fig. 14. Visualizing the effect of implementing fancy PCA. The top
images show the approach intensify the important regions in “texture-wise”
classifications; whereas the bottom two images show the misleading results
in images with high-level information.

Task 1

True label

N ~
Predicted label

Fig. 15. The best result for task 1. Accuracy: 90.7%
]
Qa
2
[
2
-
N ~
Predicted label
Fig. 16. The best result for task 2. Accuracy: 83.5%

Task 3

True label

9 ~
Predicted label

Fig. 17. The best result for task 3. Accuracy: 82.7%

Task 4

(=}

True label

=

Q >
Predicted label

Fig. 18. The best result for task 4. Accuracy: 98.0%

Task 5

True label

o

~ 4"
Predicted label

Fig. 19. The best result for task 5. Accuracy: 67.9%

Task 6
0.08

0.28 0.05

51 0.16 0.02

Q

S

e

2, 0.03 0.0
5| 0.24 0.1

Q %

~ 2
Predicted label

Fig. 20. The best result for task 6. Accuracy: 75.3%

Task 7

True label

3] 011 0.07

~ v
Predicted label
Fig. 21. The best result for task 7. Accuracy: 73.6%

Task 8

0.03 0.07 0.09

True label

,] 012 0.06

3/ 0.06 0.07 0.15

%

~ N
Predicted label

Fig. 22. The best result for task 8. Accuracy: 74.1%

The performances of the different architectures are briefly
discussed. In order to cope with the imbalanced data in
certain tasks, the oversampling data approach is applied and
discovered some improvement. The fancy PCA approach is
implemented as a data augmentation method. By visualizing
with CAM, the authors found that the approach improves the
texture-wise tasks, but could be misleading for the tasks with
high-level information. Overall, the final predictions stands
at about 15% to 20% among all the competitors.

VII. CODES

Github code link: https://github.com/wenyiyen/CS230-
Final-Project.git,

Google Drive: https://drive.google.com/drive/folders/
18dr2PusDLyAbr2Hs0-Cia3SSIimY VEcP?usp=sharing

VIII. CONTRIBUTION

The code development and report write-up are done coop-
eratively. Both of the team members discussed the framework
and did web searches in the early phase. Then, Wen-Yi
worked on the initial code development, which is then
handed to Mengfan for debugging and adding more features.
The report is written based on discussions and mutual-
editting.

REFERENCES

[1] Gao, Y. and Mosalam, K. (2018). Deep Transfer Learning for Image-
Based Structural Damage Recognition. Computer-Aided Civil and
Infrastructure Engineering, 33(9), pp.748-768.

(2]
3]

(4]

(5]

(6]

(71

Yeum, C. M., Dyke, S. J., Ramirez, J., Benes, B. (2016). Big visual
data analytics for damage classification in civil engineering.

Cha, Y. J., Choi, W., Bykztrk, O. (2017). Deep learningbased crack
damage detection using convolutional neural networks. Comput-
erAided Civil and Infrastructure Engineering, 32(5), 361-378.
Apps.peer.berkeley.edu. (2018). PEER Hub ImageNet Challenge
— PEER Hub ImageNet Challenge. [online] Available at:
https://apps.peer.berkeley.edu/phichallenge/ [Accessed 15 Oct. 2018].
Simonyan, K. Zisserman, A. (2014), Very deep convolutional net-
works for large-scale image recognition, arXiv:1409.1556.

Szegedy, C., Liu,W., Jia, Y., Sermanet, P,, Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V. Rabinovich, A. (2015), Going deeper with
convolutions, in Proceedings of the IEEE International Conference
Computer Vision Pattern Recognition (CVPR), Boston, MA, 19.
He, K., Zhang, X., Ren, S. Sun, J. (2016), Deep residual learning
for image recognition, in Proceedings of the IEEE International
Conference on Computer Vision Pattern Recognition (CVPR), Las
Vegas, NV, 77078.

