Deep Visual-Semantic Embedding Models for Mobile

Swarna Saraf
Department of Computer Science
Stanford University
swsaraf@stanford.edu

Abstract

This project uses deeplearning methodologies to implement a deep visual-semantic
embedding model for mobile devices. Such models enable usage of novel image
queries in many mobile applications to support features such as image tagging
and retrieval. These models also help offset the problems associated with acquir-
ing sufficient labeled data samples for the ever exploding image categories, by
leveraging semantic information from word embeddings such as fastText [12] to
make predictions about the labels not observed during training. A lightweight
mobile architecture SqueezeNet 1.1 [4] is used to train a model with pretrained
fastText word vectors to learn semantic relationships between image labels and
map images into a rich semantic embedding space. This project observes that such
visual-semantic models are able to perform image-to-image, image-to-text and
text-to-image associations with reasonable accuracy while using less than 7% of
disk space and train parameters as compared to Resnet34.

1 Introduction

Mobile devices, with ever increasing on-device memory and better camera resolutions are the
most popular means of clicking and storing pictures. For running deeplearning models on mobile
devices, models should have smaller memory footprint and should give reasonable performance. A
deeplearning visual model that is able to leverage semantic information from word representation
systems such as fastText [12] or GloVe, will not see image labels as disconnected (as traditional
convolutional neural network architectures do) and will be able to transfer semantic information from
learned image labels to previously unseen or new labels.

The project implements a deep visual-semantic model based on Squeezenet 1.1 [4] architecture
and trained with fastText [12] word vectors. The model takes in image input and provides a 300-D
image feature vector output. Using efficient cross-platform similarity search library such as nmslib,
the output feature vector can be used for image similarity search in model predictions, or for label
prediction based on lookup of the nearest fastText [12] word vector representation for the known
image labels in dataset. The model can also be generalized for zero-shot use cases by performing
nearest neighbor search in model predictions for the fastText [12] word vector representation of the
input text label.

2 Related work

2.1 Mobile CNN Architectures

Squeezenet 1.1 architecture [4] (implementation in [11]) employs novel techniques such as use of fire
modules to reduce model parameters while maintaining reasonable accuracy. This project preserves

CS230: Deep Learning, Winter 2018, Stanford University, CA.

the performant fire modules (convolutional layers) while discarding the softmax classifier head. A
custom head is introduced with a softmax layer (along with average/maxpooling layers and a bunch
of linear layers) with outputs equal to number of train classes in the AWA?2 [8] dataset.

2.2 Deep Visual-semantic model approaches

This project is influenced by the work in Frome et.al.[2] with some differences. Instead of training
a language model from scratch, this project uses 1 million pretrained word vectors 300-D obtained
by training fastText [3] on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset
(16B tokens). This is a much bigger embedding space than the one used in [2]. Not having to train
a language model also reduces the number of training phases to two instead of three. This project
does implement a visual model from scratch. The choice of visual model architecture is what makes
our project unique and interesting. [2] uses ILSVRC 2012 winning model architecture while this
project uses a very lightweight model architecture Squeezenet 1.1 [4] suitable for deploying on
mobile and embedded devices. Popular Resnet34 model architecture is used as a baseline for both
the training stages. The visual model used in this project is pretrained on ImageNet. While [2]
uses ImageNet dataset, this project uses AWA?2 dataset proposed in [6] as the benchmark dataset
for zero-shot learning methods. Because of the above mentioned differences in implementation, we
cannot do a 1:1 comparison of the results or draw a direct conclusion.

2.3 Zero-shot learning methods and techniques

The project uses AWA?2 [8] dataset proposed in [6], for performing zero-shot learning tests on the 10
class hold-out set. The project requires significantly more work for getting reasonable Top-1 accuracy
and Top-3 accuracy with lean models geared towards mobile devices. The project does measure
per class averaged top-1 accuracy (i.e. prediction is correct when the class predicted is correct) on
validation set as the dataset is not well-balanced with respect to the number of images per class.

Zero-shot test classes
Train-Valid split 90:10 1000 - test

. train
mm valid

1400 800

0 |““

1200
60

S

1000

of images per class

800

w
@
2
g
5
g
g
o
g
E S 400
%5 600 2
o 3
< 400 Z 200
E
= 200 l[l
o Ll L h bk 1 b ‘ . LLLLL, FEsDoeucy
v ay QGO EVEDT O c - - X &2 O CR & QDG YV EX O @ QEU Q"
PSS BEE B2 55385528388 250E88832¢8c833% "5FE8 SES
o © e - gT o B 5 }3 [o - F o r ac e
25 528Egese® g5"8ffE° g8 8 ggz ggg§§%ggs 588 Igg
¥ 88E *° 522 £ £58 fE x geE %8
3 8§ = - & + 3 89S ca
: g g € 5°E 2% 2 3&s 38
5 S @ 2 g g.:
£ 3 E
s
g

Class labels (total 10 classes)
Class labels (total 40 classes)

(a) Train-valid split 90:10 () Zewo-shob itest

classes

Figure 1: Image distribution in the dataset

3 Dataset and Features

The dataset used in this project is Animals with Attributes2 [8] (further discussed in [6]). Itis a
benchmark dataset for transfer learning algorithms, such as zero-shot learning. The dataset contains
37,322 images for 50 animals classes. On average, each class contains 746 images. There is a class
imbalance where the least populated class, mole has 100 images and the most populated class, horse
has 1645 images.

Image distribution for the AWA?2 dataset can be seen in Figure 1. 30,337 images in the 40 train
classes are split 90:10 to create train and valid sets. A test set containing 6985 images belonging to
10 separate classes are set aside purely for zero-shot tests. Data augmentation techniques are used
to help models generalize better. Pixel and coordinate transforms such as flip, rotate, warp, zoom,
lighting transforms are applied in an optimized way using fastai [9] library.

4 Methods

The project uses Squeezenet 1.1 [4] model architecture pretrained on ImageNet dataset. This model
architecture is lean and suitable for mobile devices. The model creation and training is a two stage
process, as shown in Figure 2.

Squeezenet 1.1 Model Architecture

‘ 256

maxpool/2
fire2
l 128
fire3
l 128
maxpool/2
|
v
fired
fire5
l25e
maxpool/2
fire6
l 384
fire?
l 384
fire8
l 512
oLa\
softmax

fire

Stage 1: Classification Model

384
|
1354

512

300

40

o
3
8
> &
£
8

maxpool/2
fired
|
fire5
maxpooli2
fire6
[fire7
[fires
kme;rﬂ
inear12
softmax

E
SqueezeNet 1.1 Backbone

Stage 2: Visual-Semantic Model

rector

]

Cosine
> Similarity «—{
Loss

.8 . g

fired
30

max
fastText word
vector [300]

image

Figure 2: Architecture for Stage 1 and Stage 2

In Stage 1, a multi-class classification model is built using Squeezenet 1.1[4] model architecture
backbone containing convolutional layers (and fire modules), rest is discarded. A custom head is
initialized containing avg/max pooling and a few linear layers. Transfer learning is used to retrain
only the layers in the custom head (while keeping the body weights frozen). Next, the layers in the
body are unfrozen and the whole model is retrained using differential learning rates. This model is
trained for accuracy and uses Cross Entropy loss for measuring performance.

In Stage 2, a visual-semantic model is built by using the saved model from Stage 1 and discarding
the softmax layers so that the model outputs a 300-D image feature vector. The body weights are
frozen and linear layers are retrained to minimize the cosine loss between image feature vectors and
pretrained fastText word vectors. Once again the layers in the backbone are unfrozen and the entire
model is retrained using differential learning rates. In this stage, the cosine similarity loss function is
used. This is a non-metric loss function well suited for similarity comparisons in high dimensional

spaces.
zl-x2
similarity = cos(vl,22) = ———————— (1
[|z1]] - [|z2]|

5 Experiments/Results/Discussion

5.1 Hyperparameter Search and tuning

One cycle policy [1] is used to train the network faster. 1. Learning rate(a): Mock training is
done with varying a and losses are determined. Then an optimum value of « is chosen where loss
still improves 2. Number of frozen layers (If): At each stage, If is varied and model is fine tuned
3.Momentum:(0.85, 0.95) 4. Weight decay:0.01, 5.0Optimization:Adam (51=0.9,32=0.99) Dropout
regularization is used along with a final batch normalization layer to train the model.

5.2 Model comparison with Baseline

Resnet34 model is used for baseline comparison. The SqueezeNet based model performs slightly
worse in the Classification task, while using less that 7% disk space and trainable parameters.

Stage 1 Model Total Parameters Size on Disk(KB) Epochs Accuracy

Resnet34 21979164 (100%) 85980 (100%) 8 95.26%
Squeezenet 1.1 1416988 (6.45%) 5565 (6.47%) 8 88.66%

Table 1: Stagel comparison with baseline

Stage 2 Total Size on Top1l Top3 Top5 Top10
Model Parameters Disk(KB) Accuracy Accuracy Accuracy Accuracy

Resnet34 21967044 (100%) 85932 (100%) 61.79% 77.68% 83.19% 89.19%
Squeezenet 1.1 1404868 (6.40%) 5517 (6.42%) 80.26% 90.25% 92.74% 96.05%

Table 2: Stage2 comparison with baseline (8 epochs each)

Zero-Shot Results (Stage 2) Top5 Accuracy Topl0 Accuracy

Resnet34 26.53% 42.29%
Squeezenet 1.1 36.85% 52.03%

Table 3: Stage?2 Zero-Shot results

5.3 Stagel: Confusion Matrix/Error Analysis

In Stage 1, the CNN model is trained for accuracy for multi-classification. Given the class imbalance,
Confusion matrix seems a good choice for interpreting model results. In Figure 3(b) and 3(c), images
in top losses are shown along with their heatmaps. In Figure 3(d) and 3(e), images in smallest losses
are shown along with their heatmaps. The heatmap analysis indicates similar areas are activated for a
particular class, probably indicating certain salient features for the class. For example, for an ox areas
around nostrils and horns are activated. Also, images with animal close-ups seem to have minimum
losses as their features are more visible.

Confusion matrix
antelope

e T
e J02801001000100001000200000000000003100000
Mg]0910100010,0000000830000020200000000600000
erel0 0 D400 00006200800 00010000006060000000000
Whoa 0 00080 6010500100010002020100000000100010]
Mool9 00 06030 001000010001020010000000000000
a0 0000883 01100210002000000001000401000000
eelo 00000 0000 0141011000000001803000000010
e l1 00005 0TM0 100010000600016032010000000000
£ 000000 0T500 0000 080000000000000000600000
1800010000000 100000100020006000000000000
mw,‘unnnuuaaan**nnaunvnnsuuaanuonnnnuaonnauu
]9 0000100000800 0000100010000000000000000
o 0000000000mo0nononiconiotononontnnsg
pomoi]2 000003940 0000000 00100020001000401000010
100000000000 00 00 0006000000000000000000
el0 000000000000000000000000000000000000600
e 001000000 06000000(F0000040101000000000000
1000 001201000001000[000000000000000000100
3 meloooocotizenoioonilogeiooneoeo3ocononong
ot 0080000000 4000006 0810000000000000600000
nlf00000010000000000000g000000000000100000
a0 900000000000000001008510200000000600000 ; i
s]9 0000 40000300000000200080010000020000000 (b) Min loss images
meael1200000000000000008000006000000000200000
0 141000000021000020000001§00000002001100
90000100700000000801000000R0001000000000
]800 000060000000001000000000K000001000000 goritla
e[900000000000000002000000008g00000200000
o]0 0900110000020000000000001008R0000000000
g0 0001 10010000000000101000101008000000010

german-+shepherd

oot

H

daimatian

omesesct 0 00000 4000000000000000000000110801000000
|0 0000001001000000000000010000000130010100)
drimoney |0 0 0010200 0000000200010000001001002000100
el |9 0000 00000000001001000000100000000W00000

S0 00000000160000008000000080000000 080010
ha1011001000010000000000010700800100080000
1008000 0008100000812000001100100001300%600
W)100206110500000020006016000600040000 0810
1a100000000060000008000000000080000000000)8
i i
i -

rhinoceros.

(a) Confusion Matrix (c) Min loss images” heatmaps (e) Max loss images’ heatmaps

Petided

Figure 3: Stage 1 Results and Error Analysis

5.4 Stage2: PCA Analysis

PCA Analysis is done in Stage 2 to visualize the image feature vector representation for a sub-sample
of the image classes in 2D. Four animal categories are chosen and their feature vector representation
for all valid samples are PCA decomposition are plotted after epoch-1 and epoch-8 as shown in
Figure 4.

5.5 Results

Squeezenet 1.1[4] based visual-semantic model gives per class-averaged Top-1 accuracy as 66.88%.
Some other results are demonstrated below:

Vormalized fastText embeddings and predictions with true class labels (small sub-sample with 4 classes)
= clephant
15 buffalo
- cow
10 dolphin

Normalized fastText embeddings and predictions with true class labels (small sub-sample with 4 classes)
= elephant
15 buffalo

- cow 10

- dolphin P

R S Lo AT A

L e R I
(a) After Epoch 1 (b) After Epoch 8

Figure 4: PCA Analysis of normalized fastText embeddings and model predictions. Triangles
represent true fastText representations for given labels.

5.5.1 Text to Image

Figure 5 shows k Nearest Neighbor search in model predictions using fastText embedding for provided
text.

w“ e

"J.‘

(a) Text query: ’king’ (b) Text query: ’stripes’ (c) Text query: ’computer’

Figure 5: Text based search in the model predictions.

5.5.2 TImage to Image

Figure 6 shows k Nearest Neighbor search in model predictions using model output for a given input
image. Example from zero-shot test data set is shown in Figure 6(b)

(a) Image Search: giraffe image (b) Image Search: panda image

Figure 6: Image similarity search on model predictions

5.5.3 Image to Text

Figure 7 shows top-5 labels for an image based on nearest neighbor search for model prediction in
fastText embeddings for all class labels. (c) demonstrates prediction on test set.

6 Conclusion/Future Work

This project demonstrates that it is feasible to build lightweight visual-semantic models for mobile
applications while meeting acceptable performance threshold. Applications with features such as
image search (based on similarity or complex text queries), tag generation, cataloging new products
(zero-shot learning) can make use of such models.

(a) [’rhinoceros’, ’ele- (b) [’dalmatian’, ’bob- (¢) [gorilla’, ’chim-
phant’, ’deer’, ’ante- cat’, ’beaver’, ’skunk’, panzee’, “elephant’,

lope’, "'moose’] ’chihuahua’] “hippopotamus’, ’zebra’]

Figure 7: Class label prediction for image. True labels (a) rhinoceros (b) bobcat (c) chimpanzee

Future work includes (1) Improving zero-shot learning performance for Squeezenet 1.1 model. (2)
Exploring techniques, aside data augmentation, to deal with class imbalance issue. (5) Using other
popular word representation libraries such as GloVe to get the embedding vectors. (4) Extending the
concept of semantic embeddings to augment audio datasets.

7 Contributions

This project has a single contributor. The project github repo is https://github.com/swarna04/cs230.

References

[1] Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1-learning
rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

[2] Andrea Frome, Gregory S. Corrado, Jonathon Shlens, Samy Bengio, Jeffrey Dean, Marc’ Aurelio
Ranzato, and Tomas Mikolov. Devise: A deep visual-semantic embedding model. In Christopher
J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger, editors, NIPS, pages
2121-2129, 2013.

[3] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and
Tomas Mikolov. Fasttext.zip: Compressing text classification models, 2016. cite
arxiv:1612.03651Comment: Submitted to ICLR 2017.

[4] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <Imb model
size. CoRR, abs/1602.07360, 2016.

[5] Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of residual networks
using large learning rates. CoRR, abs/1708.07120, 2017.

[6] Yonggin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning-a
comprehensive evaluation of the good, the bad and the ugly. IEEE transactions on pattern
analysis and machine intelligence, 2018.

[7] TorchVision Models. pytorch.org/docs/stable/torchvision/models.html.
[8] Animals with Attributtes 2 Dataset. https://cvml.ist.ac.at/awa2/.
[9] Fastai Deep Learning Library. https://github.com/fastai/fastai.
[10] Pytorch Library. https://pytorch.org/.
[11] Squeezenet Architecture. https://github.com/deepscale/squeezenet.
[12] FastText English Word Vectors. https://fasttext.cc/docs/en/english-vectors.html.
[13] Non-Metric Space Library (NMSLIB). https://github.com/nmslib/nmslib.

