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Abstract

This project uses deeplearning methodologies to implement a deep visual-semantic
embedding model for mobile devices. Such models enable usage of novel image
queries in many mobile applications to support features such as image tagging
and retrieval. These models also help offset the problems associated with acquir-
ing sufficient labeled data samples for the ever exploding image categories, by
leveraging semantic information from word embeddings such as fastText [12] to
make predictions about the labels not observed during training. A lightweight
mobile architecture SqueezeNet 1.1 [4] is used to train a model with pretrained
fastText word vectors to learn semantic relationships between image labels and
map images into a rich semantic embedding space. This project observes that such
visual-semantic models are able to perform image-to-image, image-to-text and
text-to-image associations with reasonable accuracy while using less than 7% of
disk space and train parameters as compared to Resnet34.

1 Introduction

Mobile devices, with ever increasing on-device memory and better camera resolutions are the
most popular means of clicking and storing pictures. For running deeplearning models on mobile
devices, models should have smaller memory footprint and should give reasonable performance. A
deeplearning visual model that is able to leverage semantic information from word representation
systems such as fastText [12] or GloVe, will not see image labels as disconnected (as traditional
convolutional neural network architectures do) and will be able to transfer semantic information from
learned image labels to previously unseen or new labels.

The project implements a deep visual-semantic model based on Squeezenet 1.1 [4] architecture
and trained with fastText [12] word vectors. The model takes in image input and provides a 300-D
image feature vector output. Using efficient cross-platform similarity search library such as nmslib,
the output feature vector can be used for image similarity search in model predictions, or for label
prediction based on lookup of the nearest fastText [12] word vector representation for the known
image labels in dataset. The model can also be generalized for zero-shot use cases by performing
nearest neighbor search in model predictions for the fastText [12] word vector representation of the
input text label.

2 Related work

2.1 Mobile CNN Architectures

Squeezenet 1.1 architecture [4] (implementation in [11] ) employs novel techniques such as use of fire
modules to reduce model parameters while maintaining reasonable accuracy. This project preserves
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the performant fire modules (convolutional layers) while discarding the softmax classifier head. A
custom head is introduced with a softmax layer (along with average/maxpooling layers and a bunch
of linear layers) with outputs equal to number of train classes in the AWA?2 [8] dataset.

2.2 Deep Visual-semantic model approaches

This project is influenced by the work in Frome et.al.[2] with some differences. Instead of training
a language model from scratch, this project uses 1 million pretrained word vectors 300-D obtained
by training fastText [3] on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset
(16B tokens). This is a much bigger embedding space than the one used in [2]. Not having to train
a language model also reduces the number of training phases to two instead of three. This project
does implement a visual model from scratch. The choice of visual model architecture is what makes
our project unique and interesting. [2] uses ILSVRC 2012 winning model architecture while this
project uses a very lightweight model architecture Squeezenet 1.1 [4] suitable for deploying on
mobile and embedded devices. Popular Resnet34 model architecture is used as a baseline for both
the training stages. The visual model used in this project is pretrained on ImageNet. While [2]
uses ImageNet dataset, this project uses AWA?2 dataset proposed in [6] as the benchmark dataset
for zero-shot learning methods. Because of the above mentioned differences in implementation, we
cannot do a 1:1 comparison of the results or draw a direct conclusion.

2.3 Zero-shot learning methods and techniques

The project uses AWA?2 [8] dataset proposed in [6], for performing zero-shot learning tests on the 10
class hold-out set. The project requires significantly more work for getting reasonable Top-1 accuracy
and Top-3 accuracy with lean models geared towards mobile devices. The project does measure
per class averaged top-1 accuracy (i.e. prediction is correct when the class predicted is correct) on
validation set as the dataset is not well-balanced with respect to the number of images per class.
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Figure 1: Image distribution in the dataset

3 Dataset and Features

The dataset used in this project is Animals with Attributes2 [8] (further discussed in [6]). Itis a
benchmark dataset for transfer learning algorithms, such as zero-shot learning. The dataset contains
37,322 images for 50 animals classes. On average, each class contains 746 images. There is a class
imbalance where the least populated class, mole has 100 images and the most populated class, horse
has 1645 images.

Image distribution for the AWA?2 dataset can be seen in Figure 1. 30,337 images in the 40 train
classes are split 90:10 to create train and valid sets. A test set containing 6985 images belonging to
10 separate classes are set aside purely for zero-shot tests. Data augmentation techniques are used
to help models generalize better. Pixel and coordinate transforms such as flip, rotate, warp, zoom,
lighting transforms are applied in an optimized way using fastai [9] library.



4 Methods

The project uses Squeezenet 1.1 [4] model architecture pretrained on ImageNet dataset. This model
architecture is lean and suitable for mobile devices. The model creation and training is a two stage
process, as shown in Figure 2.

Squeezenet 1.1 Model Architecture
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Figure 2: Architecture for Stage 1 and Stage 2

In Stage 1, a multi-class classification model is built using Squeezenet 1.1[4] model architecture
backbone containing convolutional layers (and fire modules), rest is discarded. A custom head is
initialized containing avg/max pooling and a few linear layers. Transfer learning is used to retrain
only the layers in the custom head (while keeping the body weights frozen). Next, the layers in the
body are unfrozen and the whole model is retrained using differential learning rates. This model is
trained for accuracy and uses Cross Entropy loss for measuring performance.

In Stage 2, a visual-semantic model is built by using the saved model from Stage 1 and discarding
the softmax layers so that the model outputs a 300-D image feature vector. The body weights are
frozen and linear layers are retrained to minimize the cosine loss between image feature vectors and
pretrained fastText word vectors. Once again the layers in the backbone are unfrozen and the entire
model is retrained using differential learning rates. In this stage, the cosine similarity loss function is
used. This is a non-metric loss function well suited for similarity comparisons in high dimensional

spaces.
zl-x2
similarity = cos(vl,22) = ———————— (1
[|z1]] - [|z2]|

5 Experiments/Results/Discussion

5.1 Hyperparameter Search and tuning

One cycle policy [1] is used to train the network faster. 1. Learning rate(a): Mock training is
done with varying a and losses are determined. Then an optimum value of « is chosen where loss
still improves 2. Number of frozen layers (If): At each stage, If is varied and model is fine tuned
3.Momentum:(0.85, 0.95) 4. Weight decay:0.01, 5.0Optimization:Adam (51=0.9,32=0.99) Dropout
regularization is used along with a final batch normalization layer to train the model.

5.2 Model comparison with Baseline

Resnet34 model is used for baseline comparison. The SqueezeNet based model performs slightly
worse in the Classification task, while using less that 7% disk space and trainable parameters.

Stage 1 Model Total Parameters Size on Disk(KB) Epochs Accuracy

Resnet34 21979164 (100%) 85980 (100%) 8 95.26%
Squeezenet 1.1 1416988 (6.45%) 5565 (6.47%) 8 88.66%

Table 1: Stagel comparison with baseline




Stage 2 Total Size on Top1l Top3 Top5 Top10
Model Parameters Disk(KB) Accuracy Accuracy Accuracy Accuracy

Resnet34 21967044 (100%) 85932 (100%) 61.79% 77.68% 83.19% 89.19%
Squeezenet 1.1 1404868 (6.40%) 5517 (6.42%)  80.26% 90.25% 92.74% 96.05%

Table 2: Stage2 comparison with baseline (8 epochs each)

Zero-Shot Results (Stage 2) Top5 Accuracy Topl0 Accuracy

Resnet34 26.53% 42.29%
Squeezenet 1.1 36.85% 52.03%

Table 3: Stage?2 Zero-Shot results

5.3 Stagel: Confusion Matrix/Error Analysis

In Stage 1, the CNN model is trained for accuracy for multi-classification. Given the class imbalance,
Confusion matrix seems a good choice for interpreting model results. In Figure 3(b) and 3(c), images
in top losses are shown along with their heatmaps. In Figure 3(d) and 3(e), images in smallest losses
are shown along with their heatmaps. The heatmap analysis indicates similar areas are activated for a
particular class, probably indicating certain salient features for the class. For example, for an ox areas
around nostrils and horns are activated. Also, images with animal close-ups seem to have minimum
losses as their features are more visible.
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Figure 3: Stage 1 Results and Error Analysis

5.4 Stage2: PCA Analysis

PCA Analysis is done in Stage 2 to visualize the image feature vector representation for a sub-sample
of the image classes in 2D. Four animal categories are chosen and their feature vector representation
for all valid samples are PCA decomposition are plotted after epoch-1 and epoch-8 as shown in
Figure 4.

5.5 Results

Squeezenet 1.1[4] based visual-semantic model gives per class-averaged Top-1 accuracy as 66.88%.
Some other results are demonstrated below:



Vormalized fastText embeddings and predictions with true class labels (small sub-sample with 4 classes)
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Figure 4: PCA Analysis of normalized fastText embeddings and model predictions. Triangles
represent true fastText representations for given labels.

5.5.1 Text to Image

Figure 5 shows k Nearest Neighbor search in model predictions using fastText embedding for provided
text.
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(a) Text query: ’king’ (b) Text query: ’stripes’ (c) Text query: ’computer’

Figure 5: Text based search in the model predictions.

5.5.2 TImage to Image

Figure 6 shows k Nearest Neighbor search in model predictions using model output for a given input
image. Example from zero-shot test data set is shown in Figure 6(b)

(a) Image Search: giraffe image (b) Image Search: panda image

Figure 6: Image similarity search on model predictions

5.5.3 Image to Text

Figure 7 shows top-5 labels for an image based on nearest neighbor search for model prediction in
fastText embeddings for all class labels. (c) demonstrates prediction on test set.

6 Conclusion/Future Work

This project demonstrates that it is feasible to build lightweight visual-semantic models for mobile
applications while meeting acceptable performance threshold. Applications with features such as
image search (based on similarity or complex text queries), tag generation, cataloging new products
(zero-shot learning) can make use of such models.



(a) [’rhinoceros’, ’ele- (b) [’dalmatian’, ’bob- (¢) [gorilla’, ’chim-
phant’, ’deer’, ’ante- cat’, ’beaver’, ’skunk’, panzee’, “elephant’,

lope’, "'moose’] ’chihuahua’] “hippopotamus’, ’zebra’]

Figure 7: Class label prediction for image. True labels (a) rhinoceros (b) bobcat (c) chimpanzee

Future work includes (1) Improving zero-shot learning performance for Squeezenet 1.1 model. (2)
Exploring techniques, aside data augmentation, to deal with class imbalance issue. (5) Using other
popular word representation libraries such as GloVe to get the embedding vectors. (4) Extending the
concept of semantic embeddings to augment audio datasets.

7 Contributions

This project has a single contributor. The project github repo is https://github.com/swarna04/cs230.
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