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Abstract

This paper studies whether neural networks can effectively predict the required
water usage level when weather data is noisy and soil data is unobserved. By run-
ning prediction on simulated data, we showed that the variation in unobserved soil
characteristics and measurement noises in ETo rates greatly affect the prediction.
In contrast, the measurement error of precipitation doesn’t affect the prediction
significantly. For firms that are working on improving automated irrigation system,
this has important strategic implication for data collection, which is generally
expensive.

1 Introduction

Net Irrigation Requirement (NIR) is the amount of irrigation required for a lawn given the soil and
weather conditions. If an automated irrigation system is capable of predicting the optimal irrigation
amount, it will effectively help crop cultivation and lawn maintenance in terms of saving human
resource and water. Based on a scientific model known as evapotranspiration (Nouri et al., 2013), the
optimal irrigation amount depends on the evapotranspiration rate (ETo), the effective rainfall (ERain),
and the soil water storage. Since the soil water storage depends on past rainfalls and evaporations, a
sequential model is ideal for this task.

However, one challenge is that many of the above variables are unobserved or measured inaccurately
in the observational data, as discussed in Torres et al. (2011) and Park et al. (2016). Despite the
effort made in measuring the relevant variables and the process, it can be expensive and difficult for
an automated irrigation system to collect more detailed data, as it involves installing more tracking
devices per system. Therefore, we are interested in exploring how different kinds of measurement
errors and unobserved features affect the prediction. Such understanding enables us to decide
what data to collect to improve our prediction: we should only focus on those variables whose
measurements greatly affect the prediction. Since the underlying scientific model that generates the
data is known, we plan to investigate this problem by running simulation.

2 Background

2.1 Observational Data

In the process of evapotranspiration, a number of variables are involved in a given day d and a
household 7. We classify these variables into the following categories based on how accurately they
are observed in the observational data

Measured accurately:

*This project is advised by Professor Wesley Hartmann and Kristina Brecko.



e NIR(d,1): Net irrigation requirement on day d and household .
Measured inaccurately:

e Precip(d,i): Precipitation. We have the average rainfall in a region based on the weather
report but don’t observe the specific level of rainfall of a house. For example, resident lives
in the south of a mountain should get exposed to different levels of rainfalls compared to
those in the north side.

e ETo(d,1): evapotranspiration rate. Similar to precipitation, we observe the average evap-
otranspiration rate in a region, but not at the household level. For example, if areas are
exposed differently to the sun because of their surroundings, they will have different levels
of evaporation.

Unobserved:

e MaxSoil(i): the maximum soil water storage of a given household. This variable depends
on the soil characteristics, which differ across households and is costly to measure. It is
unavailable in the current observational data.

e SoilStorage(d,i): the water storage in the soil that evolves over time. It is completely
unobserved. If the LSTM algorithm works well on the prediction algorithm, it should
implicitly capture this unobserved soil storage variable.

e FERain(d,1): effective rain
2.2 Scientific Model for Irrigation

The variable of interest, the Net Irrigation Requirement (NIR) variable evolves based on the following
rules:

NIR(d,i) = Max[ETo(d,i) — ERain(d,i) — SoilStorage(d — 1,1), 0]
ERain(d,i) = Min[Precip(d,i), (MaxSoil(i) + ETo(d,i) — SoilStorage(d — 1)]
SoilStorage(d, i) = Min[MaxSoil(i), (Precip(d) — ETo(d) + SoilStorage(d — 1))]

Figure 1a shows a visualization of the data generating process. The variables with dotted lines are
unobserved.

Figure 1: Data Generating Process vs Neural Network
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3 Simulation

3.1 Motivation

Since many of the variables in the evapotranspiration process are not observed, the prediction
algorithm doesn’t work effectively given the current observational data, which has limited size
and high noise. For companies who are developing an automated irrigation system, they need to
decide what sensors are cost-effective in terms of measuring these variables to improve the irrigation



prediction. Indeed, one way to answer this problem is to design a system that can measure all the
variables accurately, and then select different variables to test the problems. However, it is extremely
expensive if we want to produce many of these devices, distribute it farmers or homeowners, and they
collect data.

An alternative solution is through simulation. Unlike autonomous driving where a lot of sensors
and road test are needed, the data generating process is clearly defined and known in this irrigation
problem based on science. Therefore we can simulate data using and then explore how different level
of measurements and amount of data will affect our prediction by simulation.

3.2 Simulation Setting
We first simulate unobserved variables as follows:

MaxSoil(i) ~ Unif(0.45,0.45 + ¢)
SoilStorage(—1,i) ~ Unif(0, MaxSoil(i))

where c is a positive constant that represents how different soils are across households can be. Since
MazxSoil(i) is an important component that plays a nonlinear role in the data generating process, it
can significantly influence the complexity of the problem.

For variables that are measured inaccurately-the evapotranspiration rate ETo(d, 7) and the precipita-

tion Precip(d, i), we simulate them by adding noise to the actual weather data.

Precip(d,i) = Precip(d,i) x Maz(1 + 8,(i) + €,(d, ), 0)

ETo(d,i1) = ETo(d,i) x Max(1+ (i) + €.(d,7),0)

where we assume
8p(8) ~ N(0,92);  8e(i) ~ N(0,72)

ep(i) ~ N(O,U;); EE(Z.) ~ N(ngg)

We use multiplication instead of addition for noise simulation because when there is no rain at all
in a region, we are confident that any of the household didn’t receive any precipitation, therefore

when Precip(d,i) = 0, we want Pre/ci-p\(d, i) = 0. We still want the multiplier to be non-negative,
because both Precip and E'To should be positive.

In summary, combining the three years of daily actual weather data Precip(d, i) and ETo(d, %) and
the simulated soil data, we simulate the variable of interest, NIR, based on the evolving equations
for 2000 households. In total, there are 2000 x 365 x 3 = 2,190, 000 observations. The task is to

use the current and past noisy weather data Precz’/IYd, i) and Emz) and past NIR to predict the
current NIR.

4 Method

Since this problem has a sequential structure, we mainly use LSTM and hope that the network
can capture hidden features that are related to the underlying scientific process. We feed ETo,
Precipitation, and the NIR of the last period into an LSTM model to predict the NIR of the current
period. Since the DGP has several layers, we also tried multiple stacked layers. Interestingly, a
twice-stacked LSTM network performs the best, the structure of which is shown in 1b. This may
be because the true data generating process also only has two layers. Figure (2b) is an example of
the predicted NIR compared to the actual data over time, where the prediction is made by a 15-unit
LSTM stacked by another 5-unit LSTM.
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5 Results

We test how prediction accuracy changes as we vary by the underlying parameters © =
{c,7p,72,05,02}. We set our benchmark parameters to be ©9 = {0.45,0.01,0.01,0.01,0.01},
for each parameter we vary them from a set of alternatives, while holding other prameters constant.

¢ e {0.1,0.2,0.45,0.9, 1.5}
Vs Yes Op, 0c € {0.1,0.2,0.3,0.4,0.5}

5.1 Noise vs Accuracy

In order to test how different levels of noises affect the performance of the neural network, we
simulate the data from the above range and compare the effect statistically by running a regression
that regresses the prediction error (RMSE) on the noise parameters. If the coefficient is significantly
positive, it suggests that larger noises significantly lead to higher errors. As shown in Table 1, what
matters the most is the variation of soil characteristics across households and the measurement noise
of evapotranspiration. In contrast, if we have constantly underestimated or overestimated the rainfall
or the evapotranspiration, such bias would not affect our prediction, since the algorithm itself can
almost figure it out.

Table 1: Regression Result on Accuracy vs Noise

RMSE
Soil Noise 0.010* (0.005)
Precipitaion Bias —0.001 (0.012)
Evaporation Bias —0.005 (0.012)
Precipitation Noise 0.003 (0.012)
Evaporation Noise 0.025** (0.012)
R? 0.333
Residual Std. Error 0.006 (df =19)
Note: *p<0.1; **p<0.05; ***p<0.01

Therefore, an automated irrigation system should be comfortable using county level weather data as
input to the algorithm. However, getting additional information on soil characteristics and getting a
better measurement on evapotranspiration can significantly improve the predcition.

5.2 Intepretation of hidden variables

In our final output layer, the input are five latent variables that are the output of the LSTM unit. To
understand whether the neural network picks up information about the underlying scientific process,
we check whether the combination of these variables explain significant variation of initial soil
storage, max soil storage, precipitation bias and evapotranspiration bias. These are key parameters
in the data genrating process that are not observed. To do this, we first run pairwise correlational



analysis between hidden variables and the parameters of the data generating process. In the end we
run a regression to test the R-squared eplained.

Correlation with Hidden Features R-Squared Explained

1 2 3 4 5 R2 R2 Adjusted

MaxSoil -0.065 -0.005 -0.042 -0.091 -0.053 0.052 0.028
Initial Soil Storage -0.048 -0.033  0.006 -0.063 0.011 0.049 0.024
ETo Bias 0.635 0.502 0.735 -0.443 0.727 0.723 0.716
Precip Bias 0.018 -0.291 -0.017 -0.304 0.288 0.297 0.279

5.3 Error Analysis

Section 5.1 compares the prediction across different datasets, generated by different parameter
distributions. We are also interested in the performance of the algorithm within a dataset. This is
valuable because if we can expect the cases when we know the prediction doesn’t work well, we can
always ask for human input in these cases and avoid unnecessary waste.
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6 Conclusion

In conclusion, we have used a stacked LSTM to successfully predict water usage, which can be
applied to improve an automated irrigation system. We showed that the measurement accuracy of
precipitation doesn’t play a significant role, since the neural network can partially internalize these
noises. Firms who are interested in developing these devices should focus on ways to measure soil
characteristics, directly or indirectly. In general, it is more difficult to predict the irrigation level when
the maximum soil storage for water is low, making the evapotranspiration process more non-linear.
Possibly for the same reason, it is difficult to predict when the evapotranspiration is high. We should
be less confident for soils with low saturation level and days when the ETo is high.



Code

https://github.com/georgegui/CS230_Project
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