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Abstract

Pokémon Showdown is a faithful open-source recreation
of the battle system in the original Pokémon franchise.
Gameplay consists of arena-style battles in which players
carry out moves simultaneously with the ultimate goal of
defeating the opponent’s team of Pokémon. We use deep
reinforcement learning in conjunction with feature-space
embeddings and test the performance of this model against
various baseline models.

1. Introduction

Reinforcement learning has long been an area of inter-
est for many areas of research that require high-level con-
trol without the use of explicit control or featurization. Re-
cent advancements in the use of deep neural networks have
accelerated both the learning speed and resulting quality
of these agents. These unsupervised, end-to-end learning
methods have proved promising, as evidenced by Deep-
Mind’s work in achieving superhuman performance in both
Atari games [11] and Go [14]. Reinforcement learning
has also found uses in real-world applications such as self-
driving cars and robotics.

Pokémon battles are unique in that players are adver-
sarial and move simultaneously; this is in contrast to turn-
based games such as Chess. As an extremely complex game
with many varied strategies, levels of play, and metagame
theories, Pokémon provides an excellent testbed for gaug-
ing the performance of modern reinforcement learning al-
gorithms.

We select proximal policy optimization (PPO) as our al-
gorithm of choice. We train a deep neural net to represent
the policy evaluation function. The input to our algorithm
consists of battle state features; the output of our neural
net are probabilities for each move index representing how
good that move is in the overall policy. This move index
is then fed back into the battle environment and used to
progress the game.
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2. Related Work

Reinforcement learning methods existed long before
deep learning became popular, but previous game-playing
agents typically made extensive use of manual featurization.
With the rise of deep learning, these techniques were revis-
ited in the context of utilizing machines to train complex
nonlinear models.

One seminal paper in this field explores playing Atari
games using deep-Q learning [11]. The authors utilize the
same set of hyperparameters across all games, showing that
the algorithm is able to generalize well across many differ-
ent environments and conditions. Agents trained as such
are quickly able to surpass humanlike performance in many
games.

However, Q-learning still has difficulty learning complex
value functions; if the target value function is extremely
complex and not easily learned, the resulting policy will
suffer as well. More recent approaches typically use pol-
icy gradient methods, which operate directly in the policy
space and can still learn good policies without learning a
value function directly.

Recent advancements in policy-gradient algorithms have
solved many problems with vanilla policy gradient meth-
ods. Trust Region Policy Optimization (TRPO) is one such
method that provides theoretical guarantees for monotonic
improvements in the policy over time [12].

Asynchronous advantage actor-critic (A3C) [10] is an-
other such approach in which multiple agents are launched
in separate environments. This was developed with the in-
tention of decorrelating experiences and stabilizing train-
ing. Although we do not explore distributed training in
this paper due to financial constraints, we note that our ex-
periments were largely bottlenecked by computational re-
sources. Being able to leverage multiple machines may
have enhanced our results.

A relatively new algorithm in the reinforcement learn-
ing space is that of proximal policiy optimization (PPO)
[13]. Whereas previous policy gradient methods are slow
and costly to train, PPO uses a simpler objective function
while still ensuring useful results. The new, modified ob-



jective implements TRPO in such a way that it is compat-
ible with stochastic gradient descent, thus achieving high
performance with good sample efficiency.

Modern advancements in deep learning techniques have
not yet found significant use in Pokémon as of yet. Many
implementations instead focus on traditional techniques like
minimax to explore a Pokémon battle game tree. Further-
more, the infrastructure for running large-scale simulations
in a research environment has not been exposed in a clean,
easy-to-use library; the closest we were able to find was a
fairly limited environment for AI competitions [7].

3. Dataset and Features
3.1. Embeddings

Data for the embeddings was taken from a dataset on
Kaggle [3]. It contains the stats of the first 721 Pokémon
of the Pokédex, i.e. the ones corresponding to the first
six generations of the RPG. Each row contains the name,
type(s), numerical stat data (such as HP, Attack, Speed,
etc.), and some other data such as color, height, and whether
the Pokémon is considered legendary (in game).

To create embeddings for each Pokémon, we turned the
data into a graph to be used with Node2Vec [6], which cre-
ates embeddings from graph data in a fashion similar to
Word2Vec [9]. It first takes in a graph, then randomly sam-
ples that graph to create random walks of some number of
nodes. Using these random walks, it creates a skip-gram
model that can then be trained to generate embeddings.

For the Pokémon graph, we take each Pokémon and cre-
ate nodes from its name, type(s), and each of its numerical
attributes (Total, HP, Attack, Defense, Sp. Atk., Sp. Def.,
and Speed). There are also two special nodes, Legendary
and Mega. Then, we add edges between the Pokémon’s
name and all values associated with it: its type(s), its numer-
ical data, and Legendary and/or Mega only if the Pokémon
is legendary or has a Mega evolution, respectively. Finally,
we apply Node2Vec to this graph.

Most similar Pokémon H

Chikorita, Turtwig, Nuzleaf, Petilil, Ex-
eggcute, Skiploom, Jumpluff, Oddish,
Budew

Wurmple, Weedle, Kakuna, Metapod,
Paras, Ledyba, Spinarak, Venonat, Sil-
coon

Lugia, Mesprit, Mew, Victini, Celebi,
Cresselia, Volcanion, Ho-Oh, Uxie

H Pokémon

Bulbasaur

Caterpie

Mewtwo

Table 1. Similar Pokémon within the embedding space.

With the generated embeddings from Node2Vec, we
check the most similar nodes of some Pokémon to observe
the validity of the results. For example, the most similar

Pokémon to Bulbasaur are Chikorita, Jumpluff, Exeggcute,
Skiploom, and Gloom, which are all relatively weaker Grass
types. To better visualize the embeddings, they were flat-
tened to 2 dimensions and plotted, with each Pokémon col-
ored based on their type, generating Figure 1.
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Figure 1. Embedding clusters projected into a 2-dimensional space

While the clusters appear to be random, we are confident
that they are mostly correct, based on the nearby nodes as
seen above. The graph also does not entirely capture the
information contained in the embeddings, since it is a flat-
tened projection. If needed, we could further improve the
effectiveness of our embeddings by tuning the hyperparam-
eters used to train the Node2Vec model (e.g. dimensions of
embeddings, number of nodes in random walk, number of
random walks).

3.2. Offline Simulator
3.2.1 Proxy Server

We built our simulation environment on top of Pokémon
Showdown [8]. Pokémon battles are incredibly com-
plex and typically involve a multitude of factors including
Pokémon, their attributes, their interactions with each other,
any active statuses, and the battle environment. As such, the
official server implementation is similarly convoluted.
However, the official implementation is also fairly re-
stricted in that it doesn’t support taking “snapshots” of game
states, which makes tree-search and rollout-based methods
much more difficult. To work around this issue, we imple-
mented our own proxy server built on NodelS that imports
only the battle system from the Pokémon Showdown repos-
itory. Our server API is intended to work in tandem with an
OpenAl Gym and run on the same machine as the RL client;
HTTP requests and responses are used to bridge the gap
between our primary language (Python) and the Pokémon
Showdown simulator environment (JavaScript). In the fu-
ture we may switch to a more efficient transport, but we are



largely bottlenecked by the speed at which we can clone
game states.

Our proxy server exposes the following functionality
over an HTTP interface:

e Creating a new game. This returns a UUID for
uniquely identifying the initial state of the game.

* Making a move. Takes in a UUID of a game state and
both the player 1 and player 2 moves. Performs an
immutable update and returns a UUID that uniquely
identifies the subsequent battle state after taking that
move. Also returns features from the new battle.

* Cleaning up. Takes in the UUID of the initial game
state and releases all subsequent battle states from
memory.

For efficiency, we memoize game trees such that nothing
is recomputed if taking an action already taken from some
game state.

3.2.2 Gym Environment

We expose the proxy server as a clientside library through
the OpenAl gym API [5]. This exposes the entire battle
system as a clean abstraction through a few methods: step,
reset, close, and seed. This environment is reusable
for any game-playing agent, and has additional lower-level
bindings for accessing the proxy server directly (used in the
minimax agent).

3.2.3 Feature Engineering

Features are derived from the battle state in the simulator.
At a high level, battles consist of two sides. Each side con-
sists of a team of Pokémon, and each Pokémon has some
set of moves. Each of these objects (battle, side, Pokémon,
and move) has attributes that can be used to derive a feature
vector.

3.3. Opponent Agents

For online training of our agent, we created three distinct
opponent agents, all playing with a fixed strategy.

* Random agent. Selects any available move at random.

* Default agent. Always tries to pick a non-switching
move.

* Minimax agent. Uses a heuristic that prioritizes dam-
aging the opponent (which is a strategy strong at
lower levels). Computes the difference between team
healths; larger margins represent a stronger game state
heuristic.

4. Methods
4.1. Proximal Policy Optimization

The proximal policy optimization algorithm uses the fol-
lowing objective function [13]:

LEHP (9) = Ey[min(ry(0) Ay, clip(r¢(0), 1 — €, 1 + €) Ay,

where 0 is the policy parameters, E, is the empirical ex-
pectation over time, 7, is the ratio of probability of actions
under the new and old policies, A, is the estimated advan-
tage at time ¢, and € is a hyperparameter. Essentially, at
each timestep the algorithm chooses a new policy based
on experimental data that maximizes the agent’s advanatge
while maintaining a small deviation from the previous pol-
icy. This limit on deviation is encoded by € and the clipping
function. For our experiments, we modify a reference im-
plementation from OpenAl [2].

4.2. Network Architecture

We experimented with multiple network architectures,
but we settled on a simple multi-layer perceptron for our
final experiments. This consisted of a three-layer network
with fully-connected layers, each with 512 units and a
ReLU activation.

4.3. Move Invalidation

Because only a subset of moves are valid for each player
at each battle state, we need to ensure that our agent doesn’t
select an invalid move (otherwise the battle simulator will
error out). To accomplish this, we slightly modify the RL
algorithm loop; instead of just observing a state, the agent
observes a pair of (state, actions), where actions is a tuple
of valid move indices.

We pass in state as the input to our neural net as usual.
However, before taking the softmax of our output layer log-
its, we use the actions as an additional input to force the
logits of the invalid moves to negative infinity. This causes
the final probability of invalid moves to become 0 after tak-
ing softmax.

5. Experiments

We train our RL agent against each of the three opposing
agents. Due to computational constraints, we restrict the
minimax agent to 1-ply. This turns it into a greedy agent that
seeks to maximize damage to the opponent during its turn.
Our training was performed on a single machine with an
NVIDIA GTX1070. Each agent was trained until its reward
curve stabilized (usually around 100 epochs).



H Hyperparameter Value ||

Steps per epoch 4000
vy 0.99
Clip ratio 0.2

7 learning rate 3e-4
Value function learning rate le-3
A 0.97
Target KL divergence 0.01

Table 2. Hyperparameters used for training.

6. Results and Discussion
6.1. Evaluation Metric

We evaluate our model based on the average reward
per epoch, which represents the performance of the agent
against its opponent. Our agent obtains a reward of 41 if it
wins the battle, —1 if it loses, and O for all other battle states.
We also perform qualitative analysis over our agent and an-
alyze the game states at a higher level to obtain insight into
our agent’s decisions.

6.2. Performance

|| Opponent Average epoch reward H
Random 0.85
Default 0.58
Minimax -0.9

Table 3. Average epoch rewards after training convergence for op-
ponent agents.

We found that the agent was able to learn to defeat both
the random and default agents, achieving an average re-
ward of around 0.85 after training for about 70 epochs (see
Figure 2). On the other hand, our agent failed to perform
against the minimax agent (Figure 3), showing almost no
improvement even after the same number of epochs. We be-
lieve that this is due to the minimax agent being too strong,
preventing the RL agent from learning anything useful at a
reasonable rate. Likely, no matter which move our agent
chose, the minimax agent would choose the best move to
counter, leading our agent to believe that there is no move
that would clearly be more beneficial in that game state.

Somewhat surprisingly, our minimax-trained agent was
able to perform well against the random and default agents
despite often losing to minimax. This indicates that the RL
agent is indeed learning to attempt moves to defeat the op-
ponent, even if it has not yet learned any particularly strong
strategies to defeat more difficult opponents.
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Figure 2. Reward increasing over training epochs against a random
agent.
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Figure 3. Reward stagnating against a minimax opponent. The
agent is unable to make significant progress in this scenario.

6.3. Learned Policy

We had the agent play 100 games against each agent af-
ter training, and recorded the moves that it chose, creating
histograms such as Figure 4. The first four indices of the
move index are using one of the four moves that a Pokémon
has, the next five are switching to one of the other Pokémon
in reserve, and the last two are passing and no-op (which
are the only allowed moves in specific battle situations).

We find that the agent learns to use moves rather than
switching Pokémon, but oddly enough it preferentially
chooses the fourth move. The agent learned essentially the
same policy against each agent, which is why it was able
to beat the random and default agents after poorly training
against minimax. We are unfortunately unable to determine
why the agent learns to only choose the fourth move, as the
Pokémon teams and moves are generated randomly, so no
clear pattern emerges.

Typically, one would expect the agent to choose moves
that would be “super effective” against the opponent (i.e.



the type of the move has an advantage over the type of the
opponent’s active Pokémon, causing the move to deal twice
the amount of damage). It could also choose moves that
restore health to its own Pokémon, or choose moves that
boost its Pokémon’s stats to deal more damage or take less
damage in later turns. However, given that Pokémon and
moves are random, this is not the case, since only choosing
the fourth move no matter the situation indicates that the
agent appears to not differentiate between different moves
in that slot.

Upon closer inspection of the games played, the agent
appears to learn to switch Pokémon when the active
Pokémon reaches low health. There are still some pecu-
liarities though, as it almost always chooses to switch to the
Pokémon in the last slot (move index 8). The usual strate-
gies players have is to choose to switch when the current ac-
tive Pokémon is at a disadvantage (e.g. low in health or is at
a type disadvantage), and then switch to another Pokémon
that would have an advantage (generally one that has a
“super effective” move against the opponent’s Pokémon).
Since the agent only chooses to switch to its last Pokémon,
however, it does not appear to know of this strategy, instead
opting to switch just so the current active Pokémon would
have full or high health.

We are still uncertain as to the reason why the RL
agent learns to preferentially choose the fourth move. As
explained, battles are initialized at random with different
Pokémon each time, each with different moves, and the
agent is initialized with random weights. There does not
appear to be an issue with the implementation of the learn-
ing algorithm, as the moves chosen by an untrained agent
are generally uniformly distributed among legal moves, and
it does appear to learn to win against the random and default
agents. It is possible that this policy is a local optimum, but
this is doubtful because we see the agent repeatedly learn
the same policy against different agents, rather than a more
even distribution of policies among preferentially choosing
a specific move. More experiments need to be attempted in
order to fully understand why the agent believes the fourth
move is almost always the best move it can make.

7. Conclusion

Our results show that an RL agent is able to make
progress in playing against simple agents; however, we
were unable to achieve performance on-par with human
play. Our PPO-trained agent is able to make significant
progress against the random and default agents; however,
it fails to perform well against the minimax agent.

We believe that although our agent was not entirely suc-
cessful, the environment and training framework we have
developed here will be useful for others attempting to per-
form similar experiments.

Average frequency
8

Move index

Figure 4. Learned policy against a random opponent.

8. Future Work

Our final agent was ultimately disappointingly flawed,
and given more time we would like to find ways to mitigate
the agent’s strange tendency to choose the fourth move. We
would need to develop a method to better visualize what
occurs during training, such as displaying a histogram that
changes over time as the agent learns new policies. We may
also wish to train on certain preset teams of Pokémon, and
observe if the agent is able to discover more effective strate-
gies given some predetermined starting point.

Self-play is one final area we wished to explore [4]. We
believe that training an agent against itself would prevent
the “learned helplessness” problem we had against minimax
and allow the agent to learn a better policy.
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11. Code References

Our code in this project is broken down into four reposi-

tories:

* Clientside OpenAl gym environment: https://
github.com/kvchen/gym-showdown

* Reinforcement learning agent and opponent imple-
mentations: https://github.com/kvchen/
showdown-rl-server

* Proxy server implementation: https://github.
com/kvchen/showdown-rl

* Data exploration on final results:
https://github.com/kvchen/

showdown—-rl-notebooks
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