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1 Introduction

The objective of synthesizing novel views is to build a network that can generate images of an
object viewed from different angles, given only a single view of that object. It has a lot of practical
applications. For example, in computer graphics, it allows better photo editing when it involves
rotating an object in images. In virtual reality, it helps with reconstructing more realistic virtual
environments. In robotics, it can potentially contributes to long term target tracking when the target
comes back into sight in a previously occluded view. Synthesized views can provided a more
comprehensive understanding of the appearance of the target. This task is generally challenging due
to the ambiguity of 3D object shape given only one single view, especially inferring the unseen parts
of the object. !

2 Related Work

Many work has been done in the field of synthesizing novel view including both geometry-based and
learning-based approaches. Geometry-based methods try to first infer the underlying 3D structure of
the object from the input image, and then apply geometric transformation to generate the new image.
Such methods are able to achieve accurate view point transformation when the object structure is
successfully inferred (1; 2; 3). However, inferring the accurate object structure from a single view is
itself a difficult problem, especially when there are hidden parts.

Learning-based methods try to use a neural network to directly generate the new view image (4; 5).
The lack of pixel-to-pixel correspondence information as well as the occlusion problem makes it
difficult for such methods to generate high quality images.

Our project is mainly based on two papers. (6) introduces the idea of using the neural network to
generate an appearance flow vector which "steals" pixels from the input image to generate the new
image. Based on (6), (7) further uses an image completion network to improve the quality of the
generated image which is conditioned on the output of the appearance flow network. The completion
network is trained using GAN loss.

3 Dataset

The input to the system is a source image I and a one-hot vector 6 specifying the change of the view
point, the output is an image generated of the object viewed from the target view point G(I;). The
true target view image is denoted as I;.

We use the same dataset as in (6) and (7): ShapeNet 3D objects (8), with an open source image render
engine (9) to render 2D views of the 3D object from different angle. The render engine also can
generate the surface normal and object coordinates which are later used to generate visibility maps,
which is an intermediate value in the network generating process. The dataset contains 7900 car

"The code of this work can be found at https:/github.com/mollyzyy787/tvsn
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Figure 1: Sample rendered view for a car model
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Figure 2: Generator Network Structure

objects, each contains 18 x 3 images sweeping through azimuth angles from 0 to 340° (20° interval),
and elevation angles from 0 to 20° (10° interval).

4 Methods

In this section we briefly introduce the network structure and the training procedure, while highlighting
the extension we made to (7). The full generation network composed of two parts. The first part
is the appearance flow network noted as dis-occlusion-aware appearance flow network (DOAFN).
The second part is the completion network noted as transformation-grounded view synthesis network
(TVSN). The two networks are trained sequentially. Fig.2 gives an overview of the network structure
as well as the training loss composition.

4.1 Appearance Flow Network

DOAFN takes the source image and the transformation matrix as input and outputs the a dense flow
field as well as a visibility mask. The flow field maps the pixels in the target view, I, to the source
image, I;. The visibility map, M, is a 2D mask specifying which part of the original image is still
visible in the target view. In addition, we add a third output which is the predicted object contour M.,
in the target view. The intuition is that in the training process, although only the visible parts of the
original network could be directly seen in the target view, DOAFN is able to learn more about the
object such as the predicted contour. We want to pass this additional information to the completion
network to improve the final image quality.

DOAFN is trained in a supervised-learning fashion. The training loss is defined as:
Ldoafn = Ll (Ity Iafn) + BOE(MMS7 Mvis,groundtruth) + BCE(MC7 Mc,groundtruth)
where I, ¢, is the image generated by applying the appearance flow on the source image (6). The

first term is the L1 loss between the target image and the I, ,,. The second and the third term are
binary cross entropy loss of the corresponding output mask with respect to the ground truth.



4.2 Completion Network

The completion network (TVSN) takes Igoafn = lafn © My;s and M, as input, and outputs the final
target image G(I5). It has an "hourglass" structure similar to (10) with a bottleneck-to-bottleneck
identity mapping layer from DOAFN to TVSN.

The training loss for the generator from (7) is given by:

Ly = —logD(G(Is)) + aL2(Fp(G(Ls)), Fp(1t)) + BL2(Fugg(G(Ls)), Fugg(1t))
+vL1(G(Ls), It) + ALrv (G(Ls)) (1)

where I, G(I5), and I, are the input, generated output and corresponding target image, respectively.
D(G(Iy)) is the likelihood of G(I;) being a real image estimated by the discriminator similar as
(11). Fp and F,g4, are the features extracted from the discriminator and VGG16 loss networks
respectively. Finally, L7y is a total variation regularization term used to refine and denoise the image.
The discriminator loss is defined as:

Lp = —log(I) — log(1 — D(G(Iy)))

The training was conducted by the standard alternative optimization scheme, using Adam optimization
algorithm.

We tested multiple ways of incorporating the additional input M. into the completion network.
First, we directly concatenate M, with 14,4y as the input to the network (model noted as ‘maskc’);
Seconde, We also tried to let M, first go through an encoder network and concatenate it with Ijo4fn
in the encoded space (‘maskp’ since two inputs are encoded in parallel); We also used M, as a mask
on the output of the completion network. (The intuition is that the generation of the background is
trivial, we wanted to focus the learning on the area where the object appears. The models combining
the output mask and the first two extensions are referred to as 'maskco’ or “maskpo’ respectively);
Finally, noticing that in most cases, the visible parts of the object in both views take a large portion
in the target image, we added I, fr, to the output of the completion network as the final output. In
this way, the completion network is learning the residual between I, f,, and I;. This extension,
combined with the *'maskc’, is referred to as maskcr’.

5 Results

5.1 Appearance Flow Network

With the contour mask of the target view as the additional output compared to the original DOAFN
network in (7), the sample output is shown in Fig. 3. The content of each column is annotated in the
following table.

Figure 3: DOAFN output after 200 epoch of training

1st 2nd 3rd 4th 5th 6th 7th

target  view | visibility map | contour map | input view | target visibility map | contour

(generated) (generated) (generated) view (true) map (true)
Table 1: DOAFN output annotation




The training results for the our modified DOAFN network are satisfying as preliminary generation
results and inputs to the completion network. Comparing the column 1, 2, 3 with their ground truth
images in column 5, 6, 7 in Fig.3, we see that the generated image/masks are close to the ground
truth with some blur.

5.2 Completion Network

We added the third column (generated contour map) as an additional input to the completion network
(TVSN). There is no significant difference in performance between adding the addition input as an
additional channel with the original input image (model ‘maskc’ and ‘maskco’) and adding it in
parallel with the original input image (model ‘maskp’ and ‘maskpo’), after 100 epoch of training. The
reason is probably that the bottleneck-to-bottleneck identity mapping layer already gives the TVSN
enough information to infer the object contour. However, we can see that applying the contour mask
to the output of TVSN (model ‘maskco’ and ‘maskpo’) can result in a sharper separation between the
object and the background. Some output samples of model ‘maskc’ and ‘maskco’ as well as the loss
curves are shown in Fig.4 and 5.
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(a) model ‘maskc’ output (b) model ‘maskco’ output

Figure 4: TVSN result after 100 epoch of training

Table 2: TVSN model ‘maskc’ result annotation

lst 2nd 3rd 4th 5th
DOAEFN output | TVSN generated | input view target view DOAFN generated
image contour map

Table 3: TVSN model ‘maskco’ result annotation

1st Qnd 37"(1 4th 5th 6th 7th 8th

DOAFN| TVSN | TVSN out- | inverse generated image | input target | DOAFN gen-

output | output | put ® con- | contour (374 col + 4" col) | view view erated contour
tour map map map

It can be seen that the generated image after 100 epoch is still very blurry. From the DCGAN loss
training curve in Fig.5, we can see that the network suffers from generator instability (shown from
the sudden jump in Fig.5 (b)) and diminished gradient.

With the hypothesis that the discriminator is too strong to make the generator learn anything mean-
ingful, we proposed a new model (‘maskcr’) aiming to strengthen the generator and weaken the
discriminator, by adding .44, to generator output so that the generator is learning the residual
between I 4,4 and I;, and by reducing the discriminator convolution layers from 6 to 3. In addition,
we increased the weights of the VGG feature loss (3) from 0.001 to 0.1. Due to time limitation, we
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(a) model ‘maskc’ DCGAN loss curve (b) model ‘maskco’ DCGAN loss curve

Figure 5: DCGAN loss curve
(Horizontal axis unit is 10x # of epoch)

haven’s trained the new model as long as previous ones. Fig.6 shows the sampled results as well as
loss curves up to the 21st epoch.
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Figure 6: Model ‘maskcr’ result after 21 epoch of training

Table 4: TVSN model ‘masker’ result annotation

lst 2nd 3rd 4th 5th 6th
DOAFN| TVSN | generated image | input view | target DOAFN generated
output | output | (1% col +2"¢ col) view contour map

If we take close look at Fig.6, we could find that the completion network is able to generate the
unseen part in the source image. Although the loss for the discriminator still remains 0, the generator
loss does exhibit a more interesting oscillation than previous models.

6 Conclusion

The idea of synthesizing novel views by combining appearance flow network (DOAFN) and com-
pletion network (TVSN) inherited from (7) is shown to be a promising direction, as the generated
images started to resemble the targeted view after 100 epoch of training (the model was trained for
300 epoch in (7)). Our model, adding the DOAFN generated contour mask as an additional input to
TVSN, shows comparable performance (similar visual effect and GAN loss curve) to the baseline
model presented in the paper (shown in Fig. 7), but no significant improvement either; however,
applying the generated contour mask to the final network output does show a more clearly defined
object outline, shown in Fig.4 (b). The newly experimented model that learns the residual between
Ipoarn and I, with reduced discriminator complexity to combat the diminishing generator gradient
issue, yields a more interesting generator loss curve, as shown in Fig.6 (although we still struggles to
get the discriminator loss up). For future work, we will further carefully tune the weight for each
term in the generator loss, and perhaps further reduce the discriminator complexity. With a satisfying



first 100 epoch performance, we’ll train the network for a full 300 epochs, and reset the discriminator
parameters every 100 epochs.

7 Contribution

Miao Zhang: hyper parameter tuning, network architecture modification, loss function modification,
web server management

Xiaobai Ma: data loading and rendering, network input and output modification, executing tests,
debugging
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(b) baseline DCGAN loss curve
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Figure 7: Baseline result after 100 epoch of training

Table 5: TVSN baseline model result annotation

1st 2nd 3rd 4th
DOAFN output generated image | input target
(TVSN output) view view
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