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Abstract

Deep Learning currently presents many exciting applications to medical imaging
research. This project seeks to explore how CNNs can automatically detect and
segment ruptured intracranial aneurysms from CT angiography (CTA) scan images.
We train a semantic segmentation model using a ResNet50 encoder [1] with a selection
of decoders [2][3][4]. We investigate how these various architecture combinations
perform under a number of hyperparameters, and evaluate these results in terms of their
practical use in a clinical setting.

1 Introduction

Brain aneurysms affect 1-3% of adults, and aneurysm rupture has a high mortality rate, making their detection once
ruptured very time sensitive. Furthermore, detection of aneurysms from CTA scans is a time intensive task. A
method of rapid detection in emergency settings would be highly valuable, and deep learning approaches offer some
ways to achieve this; convolutional neural networks (CNNs) have shown great promise in applying computer vision
techniques to medical problems. Using a set of CTA scan images along with corresponding segmentation masks
labeling the aneurysms, we train a semantic segmentation network based on ResNet50 followed by either a
convolutional, Pyramid Pooling (PPM) with convolutional upsampling, or Unified Perceptive Parsing Network
(UPerNet) decoder. The trained network is used to predict a segmentation mask given a new CTA scan. An
emergency condition can therefore instantly be identified and prioritized. Typically, these architectures have been
used for multilevel pixel-wise classification (semantic segmentation) [2][3][4], in which each image has many
classes of objects to segment simultaneously [1]. We seek to understand how these networks capture features of CT
scans for the segmentation of aneurysms.

2 Related Work

Feature segmentation has been applied to numerous biomedical problems [5]. For instance, CNNs have been used
for brain tumor segmentation [6], pulmonary embolism detection [7], and knee cartilage segmentation [8]. The field
is rapidly evolving, with advances in computer vision improving medical image diagnostics. Recent unpublished
work in the Yeom lab has incorporated UNets [9] to tackle a similar problem: detection of unruptured aneurysms.

3 Dataset

Our dataset consists of 57 patients’ CTA scans, collected by Professor Kristen Yeom in the Stanford Medical
School. Each patient has around 500 CT images each, with slices spanning from the top of the head to the clavicle
(or vice versa). For a given patient, around 5-10 slices contain aneurysms. For each slice, the Yeom lab produced
segmentation masks, which provide the corresponding set of pixels in each image which contain an aneurysm. The
CT images are provided as 512 x 512 images stored in the in Digital Imaging and Communications in Medicine
(DICOM) format. Segmentation masks were produced using the software program ITK-SNAP [10], and stored as
Nearly Raw Raster Data (NRRD) files.



Label Pixels Percentage
Background |10° 99.9976%
Aneurysm ~160K 0.00235%

Table 1: Class imbalance within dataset
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Preprocessing involved converting these DICOM and NRRD
= files into PNGs, and matching segmentation mask images to
their corresponding CT scan slices. Each DICOM image is
stored as a RBG PNG with dimensions of 512 x 512 x 3, and
each NRRD mask is stored as a 512 x 512 grayscale image. The
data were split with as 51 and 6 patients in the train and test
sets, respectively.
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Figure 1: Examples of aneurysms detected by CTA scans; 3.1 Data Augmentation
aneurysms are labelled with white arrows

Data were augmented through random horizontal flips,
rotations, and cropping to image dimensions of [300, 375, 450].
3.2 Class Imbalance Resampling

The patient data contains significant class imbalance. Only 1- 2% of scan slices contain an aneurysm, and across all
pixels in the dataset, over 99.998% are background, and 0.002% are aneurysm (Table 2). The sparsity of the
aneurysm data is augmented by increasing the positive aneurysm data set 100-fold by randomly resampling scans
with aneurysms from across all patients, with the resampled scans shuffled randomly into the dataset. These
resampled images also underwent data augmentation.

4 Methods

Our semantic segmentation model incorporates two architectures: an encoder to map images onto a
lower-dimensional feature space, and a decoder to upsample features to pixel-wise classifications. We use ResNet50
[1] as the encoder, and vary the decoder between a convolutional bilinear upsampling architecture, a Pyramid
Pooling Module (PPM) following by convolutional upsampling described in [3], and a Unified Perceptual Parsing
(UPerNet) network [4]. We keep the encoder constant, using pretrained weights from the MIT ADE20K dataset [2].
We vary the decoder because decoders are often not pre-trained, and as such may contribute greater variability to
model results.

4.1 Metrics

4.1.1 Loss Function
The objective of this segmentation algorithm is to correctly classify as many pixels as possible as “containing
aneurysm”. We use the weighted Negative Log Likelihood Loss (NLLL) [11], with n batches over c output classes:
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where weights can modify the strength of loss for any class. Because of the class imbalance, each class weight was
originally scaled relative to the inverse of the number of pixels present for each class, so the loss function is more
heavily weighted by aneurysm loss.

4.1.2 Evaluation Metric
The evaluation metric used is aneurysm QU = %ﬂ , where X are ground-truth aneurysm pixels, and Y are
predicted aneurysm pixels. Aneurysm IOU measures the overlap between prediction and ground truth for aneurysm

pixels, divided by the union of prediction and ground truth.



Figure 2: Schematic of ResNet50 decoder with convolutional upsampling. The image first passes through a decoder, reducing its
dimensionality. Next, the reduced-dimensional representation of the image is passed through the decoder, generating pixel-wise aneurysm
predictions. The full architecture descriptions can be found in [1] and [2].

4.2 Architecture

4.2.1 Encoder

ResNet50: ResNet50 from [1] is adapted, with the final fully connected layer dimension set to 2048. Briefly, the
ResNet50 encoding architecture runs the inputs through a 7x7, 64 convolutional layer and a 3x3 max pool layer, and
then into a series of 4 types of “bottleneck™ block which are applied 3,4,6 and 3 times, before being fed into a fully
connected layer (see Figure 2).

4.2.2 Decoder

Convolutional: Convolutional upsampling uses two 3x3 upconvolutional, batch-normalized, ReLU layers to convert
from the 2048-dimensional fully connected layer output by ResNet50 to a 512x512x2 (since 2 classes) matrix, with
pixel labels predicted using softmax [2] (see Figure 2).

PPM: Pyramid pooling [3] combines features under four pyramid dimensions, which represent the image using
receptive fields of different sizes. The pyramid layers are upsampled to the encoder feature map size, and
concatenated before being put through a upsampling convolutional layer, which outputs the final prediction.
UPerNet: Unified Perceptive Parsing Network (UPerNet) [4] uses a Feature Pyramid Network (FPN) with a PPM
applied to the encoder output before feeding into the FPN. The decoder FPN incorporates lateral connections from
the encoder during upconvolution to improve decoder pixel annotation accuracy.

S Experiments/Results/Discussion

To determine the best model to predict aneurysms, we iteratively improve our results by 1) investigating different
architectures, and 2) tuning hyperparameters for the best model. We use the following settings for all investigations:
stochastic gradient descent (SGD) optimizer; momentum 3 = 0.9; batch size = 4; L2 weight decay factor = 0.0001;
and train for 20 epochs on data. The encoder was loaded with pretrained weights from MIT ADE20K.

5.1 Architecture Search

For the architecture search, we use the same parameters specified above for each architecture, and in addition set the
learning rate a = 2e-2. None of the architectures predicted any aneurysms without significant positive aneurysm
image resampling, so we performed an initial 40-fold resampling, increasing the number of positive aneurysm
images from ~600 to ~24,000. Of the three architectures tested (ResNet50 + Conv, ResNet50 + PPM, ResNet50 +
UPerNet), ResNet50 + UPerNet maximized IOU in both the training and test sets (Table 2). UPerNet outperformed
the other decoders, suggesting that using a FCN framework that detects features at different semantic levels (for
instance, Head — Brain — Blood Vessel — Aneurysm) is superior to simpler models.

Despite the inclusion of regularization techniques like L2 weight decay and batch normalization, all three
architectures had large variances, with IOU 2- to 10-fold greater for training IOU than eval IOU. This suggests that
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Encoder Decoder Training IOU  Test IOU Time per Epoch (s) o

ResNet50 Conv 1.67¢-2 1.8e-3 ~270
PPM 9.0e-3 1.3e-3 ~360 0.8
UPerNet 3.15e-2 1.41e-2 ~540
Table 2: Analysis of ResNet50 + Conv/PPM/UPerNet architectures. The UPerNet § 0.6
decoder outperforms both the convolutional upsampling and PPM architectures on -4
both training and evaluation IOU. However, it takes roughly 2x as long to run. =
Hyperparameter Value Training IOU Test IOU Nl o
Upsampling 10-fold 0.0272 0.0101 i \
40-fold 0.0500 0.0237 )
00 25 50 75 10.0 125 150 17.5 20.0
100-fold 0.0662 0.0252 Epoch
Background Loss 5.2¢-4 0.050 0.0025 Figure 2: Schematic of ResNet50 decoder with convolutional
Weight g upsampling. The image first passes through a decoder, reducing its
gh 5.2e3 0209 0237 dimensionality. Next, the reduced-dimensional representation of the image
5.2e-2 0.310 0.287 is passed through the decoder, generating pixel-wise aneurysm
Learning Rate 2¢-3 0316 0.384 predictions. The full architecture descriptions can be found in [1] and [2].
2e-2 0.352 0.314 . .
2e-1 0357 0.419 the data were overtrained with the parameters used,
Table 3: Analysis of hyperparameter tuning. Upsampling analysis was done using Wh,lc_h 15 hkely becaufse_ all 24’000 posmve Image
background weight loss of 5.2e-4 and learning rate of 2e-2. Background loss weight traming examples originate from a pOOl of 600
analysis was done with 40-fold upsampling and learning rate of 2e-2. Learning rate positive aneurysm images‘

analysis was done with 100-fold upsampling and background weight loss of 5e-2. All

hyperparameters were tested for 20 epochs, and the training IOU is the average IOU

of the training data over the last epoch. The test IOU was calculated using the model &
generated after the 20 epochs of training. 5.2 Hyperparameter Tunlng

After determining the best architecture, we examined
the impact of several hyperparameters on model results. We vary the hyperparameters independently, and combine
the best parameters in each analysis for the final model. We examined the following hyperparameters: extent of
upsampling, model loss weights, and learning rates. For loss weights, we started with w), = m , which

provided loss weights of 5.2e-4 and 0.9995 for the background and aneurysm pixels, respectively. Tested parameters
and results are shown in Table 3, and show that the best parameters were upsampling 100-fold, using w,_ = [5.2e-2,
0.95], and a = 2e-1. Upsampling by 100-fold increased training and evaluation IOU by around 3-fold; increasing the
loss weight of background pixel increased training IOU by ~6-fold, and increased evaluation IOU by over 10-fold;
learning rate had a minor impact on IOU.

With the best hyperparmeters, the model no longer has a variance problem, as the test IOU (0.419) is greater than
the training IOU (0.357). These 10U values are O(10*) better than random-chance 10U, which is calculated as

= —rk ek Planewysm) -~ 1075, Notably, the variance between test IOU and training IOU decreases after increasing
(# aneurysm pixels)

the loss weight of the background pixels. This suggests that the solution space is more accurately modeled when the
background pixels are given more weight, i.e. the aneurysm pixels are not overweighted and thus not overfitted. The
training loss and IOU of the best model are shown in Fig 2.

5.3 Model Applicability

The applicability of this model in a clinical setting is the most relevant success metric. Failing to detect an aneurysm
at all is a serious problem, but false positive predictions waste radiologist time. We decide to compare the final
model to a model with better recall, which was trained with 40-fold upsampling, a background loss weight of 5.2e-4,
and a = 2e-2. The improved-recall model had a training IOU of 0.050, and a test IOU of 0.0025.

As shown in Table 4, the final model suffers from poor recall: it falsely labels some aneurysms as background.
Empirically, the final model correctly predicts aneurysm location in a subset of every patient’s slices, meaning the
radiologist would see a positively labeled slice for each patient. However, the low recall makes the final model
potentially dangerous to use in practice. Meanwhile, the improved-recall model had perfect recall, but suffers from
poor precision, likely generating too many false predictions to be useful practically.



Final Model (background weight loss = 5.2e-2) Improved-recall model (background weight loss = 5.2e-4)
Aneurysm Aneurysm Not  Recall Aneurysm Aneurysm Not ~ Recall
Predicted Predicted Predicted Predicted

Aneurysm Present 39 21 0.65 Aneurysm Present 60 0 1

Aneurysm Not Present |23 2817 Aneurysm Not Present 943 1897

Precision 0.63 Precision 0.06

Table 4: Image-level analysis of aneurysm detection for the 6 patients in the test set. There are 60 total CT scan slices with aneurysms in the test set, and 2900 images
scan slices total. The aneurysm predicted/aneurysm present box shows the number of images in which the location of the aneurysm is included in the predicted pixels
for the model’s output. The precision and recall of aneurysm prediction are calculated for both the final model (background loss weight = 5.2e-2) and a model that better
performs on recall (background loss weight = 5.2e-4). The recall-favored model suffers from worse precision, meaning that radiologists would waste time parsing
model outputs. However, the final model suffers from poor recall: some aneurysms are missed entirely, and thus the model may be misleading for a radiologist using it
as an aid.

Figure 4: Examples of aneurysm localization using the A) final model and B) improved-recall model. The final aneurysm model is
significantly better at localizing aneurysms than the improved-recall model. The improved-recall model locates each aneurysm, but
also predicts as aneurysm areas several times larger than the aneurysm itself.

An analysis of the images (Figure 4) show that the improved-recall model manages to locate aneurysms, but
performs far worse than the final model at precise localization. The low IOU of the improved-recall model occurs
both because of false positives in images without aneurysms, as well as overprediction in pictures that contain
aneurysms.

6 Conclusion and Future Work

ResNet50 + UPerNet may assist radiologists in localizing aneurysms within CT angiogram scans of the human
brain. The ResNet50 + UPerNet model, by using a FCN with a PPM head, outperforms simple upconvolutional and
PPM with upconvolution decoder models. The best architecture and hyperparameters chosen generate a test [IOU of
0.419 on a data set that has a severe [99.998%, 0.002%] class imbalance, representing a 10,000-fold improvement
over random chance IOU. Although the final model has imperfect recall, it may be a useful first-pass tool for
radiologists to locate obvious aneurysms.

In the future, more network architectures should be tried for this challenging segmentation task. Examples include
UNet [12], and recently developed in-house models within the Yeom lab, such as XNet. A 3D model, where slices
are fed in batches, could detect dependencies between neighbouring images from the same patient. Future work
should also include collecting more data, in order to better model the space of possible aneurysms, which will likely
improve prediction ability.



Contributions

Both Harry and Jason coded the preprocessing pipeline and worked on model evaluation & analysis. Jason was
responsible for data augmentation, architecture and hyperparameter search, and training the models. Both parties
worked collaboratively on finding a worthwhile problem, presenting the poster, and writing the reports.
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