A Sure Bet: Predicting Outcomes of Football Matches

Sebastien Goddijn Evgeny Moshkovich
Department of Computer Science Department of Management Science and Engineering
Stanford University Stanford University
sgoddijn@stanford.edu emoshkov@stanford.edu
Rohan Challa

Department of Computer Science
Stanford University
rchalla@stanford.edu

Abstract

Being life-long football supporters we thought it would be interesting to use the
deep learning techniques covered in the class to predict the outcomes of premier
league games. To complete this task we trained various models including a simple
logistic regression, a 3-layer neural network and an LSTM, with the neural network
leading to the highest classification accuracy of around 51%.

1 Introduction

Competitive sport is a numbers game, and modern athletic teams are truly beginning to embrace this
fact. We are seeing a surge of data driven jobs in the back office of myriad different franchises, and
people are beginning to wonder just how effective cutting edge Al and ML techniques can be when
applied to an athletic context. Sports have always been a purely human endeavor, and there is an
inarguable element of randomness and chance that dictates who the victor will be on any given day,
but this begs an interesting question: is there an underlying pattern to this randomness?

For our project we focused specifically on matches in the Premier League, as this is the league that
we have watched most closely growing up, and has detailed data that is already publicly available
due to the quality of the teams involved.

The input to our algorithm consisted of both a home and away team’s individual player ratings, their
current record for the season (how many games they had won, drawn and lost), and their win/loss
streak. We then used a linear regression, a 3-layer neural network and an LSTM to output a predicted
result which could take one of three options: a home win, a draw, or an away win.

2 Related work

A number of people have tried to solve the issue of football match prediction with varying levels of
success, and their approaches can be split into two categories.

The first set of papers we read discussed the use of Artificial Neural Networks (ANNs) for sport
predictions, with authors using various architectures to achieve state of the art accuracy of just under
60%. One such paper was written by Tax and Joustra [1], who used soccer experts to determine
the most effective features for prediction, and through a combination of nine different classification

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

algorithms were able to predict results of Dutch Eredivisie games with a 54% accuracy. We felt
that the approach of using ANNs was interesting and had seen a fairly good level of success, but
we were curious as to whether or not we could use sequence models to improve the accuracy of our
predictions, which led us to papers dealing specifically with Recurrent Neural Networks.

There were a number of interesting approaches in this space, with the use of various different RNN
architectures. One paper by Petterson and Nyquist [2], which used LSTM’s to predict football match
results, was particularly helpful to us in designing our own LSTM architecture. It discussed the use
of LSTMs with peepholes, Gated Recurrent Units, and even mentioned the effectiveness of different
loss functions for solving this problem, which was extremely useful to us throughout the project.

3 Dataset and Features

Our dataset was an SQLite database that we found on Kaggle [3], which contained information about
over 25,000 European Football matches that had happened over the past decade. From this, we
extracted all of the data that was relevant to the Premier League, including team, player and match
information, and stored these as separate CSV files such that we could manipulate them more easily.

For each match we had access to: the country id, league id, season, stage, date, match api id, home
team id, away team id, home team goal, away team goal, home player X positions, away player X
positions, home player Y positions, away player Y positions, home player ids, away player ids, and
various betting odds (B365H, B365D, B365A, BWH, BWD, BWA...).

For each team we had access to: the team id, team name, FIFA id, FIFA date, and FIFA statistics
including build up play speed, build up play dribbling, and more. We decided not to use any of these
features however, as the data per team was inconsistent and had many missing values.

For each player we had access to: their player id, player name, birthday, height, weight, overall rating,
and their FIFA statistics including attacking work rate, defensive work rate, crossing, finishing, and
more. We decided only to take their overall rating into account, as the other statistics were highly
correlated with this rating.

The final features that we ended up using were the home player X positions, away player X positions,
home player Y positions, away player Y positions, home players FIFA overall ratings (11 elements),
and the away players FIFA overall ratings (11 elements). We also augmented this with data on the
current season, where, for each game, we calculated how many wins, losses and draws the teams had
up till that point, as well as their current win or loss streak.

From this we could classify one of three results, where a -1 meant the away team won, a 0 meant
there had been a draw, and a 1 meant that the home team had won. Our final data set consisted of
867 home wins, 1390 away wins, and 783 draws for a total of 3040 matches. This spanned across 8
seasons, with 380 games being played in each season. We then decided to use an 80/10/10 split for
our training, dev and test sets, for a total of 2432, 304, and 304 games respectively.

4 Methods

4.1 Logistic Regression

For our baseline algorithm we chose to run a basic logistic regression on our dataset. To do this we
Xavier initialized a weight matrix of size (3, 22) to avoid issues exploding or vanishing gradient
problems, and multiplied it with our input vector which consisted of 22 features (all of the home
and away player ratings.) We then normalized this output using a softmax activation function (1),
and computed the cost using cross-entropy loss (2) between our predicted output and the real output.
We then used gradient descent in order to update our weights such that aforementioned cost was
minimized. We ran this for 50000 epochs with a learning rate of 1.

z

o(2); = ﬂ%u) ()
LGD,yD) = =S5 10g(55")) b
j=1

4.2 Neural Network

The second model we experimented with was a fully connected three-layer neural network. Our
first hidden layer had 27 nodes, our second had 9 nodes, and our third hard 3 nodes, with all of the
weights for these layers being Xavier initialized once again to avoid exploding or vanishing gradients.
The neural network takes our input vector, and, at each layer, multiplies it with the associated weight
matrix for that given layer. Once it has done this multiplication, it runs it through a ReLU activation
(3) before passing it on to the next layer. After passing through the last layer, we use a softmax
activation (1) to normalize the output, and then use cross-entropy loss (2) to calculate the cost of that
iteration. We then used Adam to update our weights to minimize the aforementioned cost. We ran
this for 30,000 epochs with a learning rate of 1e~5.

R(z) = max(0, 2) 3

4.3 Long Short-Term Memory

A Long Short-Term Memory (LSTM) unit is a recurrent network unit that is designed to remember
values for either a long or a short duration of time. For example, if the LSTM unit detects an
important feature from an early input sequence, it carries this information over a long distance. This
is significant for many applications, such as speech processing, music composition and time series
prediction. Since a LSTM does not use an activation function within its recurrent components the
stored value is not iteratively squashed over time. To be able to use this LSTM we needed to sequence
our data, and as such chose a sequence length of 38, as each team in the league played 38 games in a
season, which gave us 160 samples to work with. From here we passed our input features to a hidden
LSTM layer with 32 nodes, and, after using dropout with a keep-probability of 0.5, we passed the
output from this layer to our softmax activation function (1). We once again used a cross-entropy loss
(2) to calculate the cost for each iteration, and used Adam to update our weights and minimize this
cost. We ran this with a batch size of 10 (to speed up training) for 300 epochs.

5 Experiments/Results/Discussion

5.1 Logistic Regression

As mentioned previously, we ran our logistic regression on an input of 22 features, containing the
FIFA ratings of all 11 of the home and away players for each match. We chose the learning rate of
1e~% and 50,000 epochs based on a few simulations that we ran, as these led to the best results. This
led to a training accuracy of around 35% and a dev accuracy of 34%, which is slightly better than
random given our three output classes. It did manage a good spread of results, as can be seen in the
confusion matrix below, but clearly there was room for improvement.

Home win Draw Away Win
Home Win 16 26 36
Draw 32 22 33
Away Win 30 44 65

5.2 Neural Network

To find the optimal neural network we tested a number of alternative architectures, though we kept
the depth of the network constant. We considered two different learning rates, 1e=% and 1e=°. We
considered three different options for the number of nodes in each layer, (20, 10, 3), (12, 6, 3) and (27,
9, 3), and we ran all of these networks for 20, 30, 40, 50, 60, and 100 thousand iterations to determine
which gave us the best result. We compared them based on their accuracy on the development set,
and our best performer had a learning rate of 1e~6, a node structure of (27, 9, 3), and was run for
thirty thousand iterations. This initial implementation gave us a training accuracy of 51% and a
development accuracy of 48%, with the loss over time graphed below.

Learning rate =1e-06

o 50 100 150 200 250 300
iterations (per hundreds)

Once we reached this level of accuracy, we were curious to see if incorporating the 'momentum’ of a
given team would have any impact on the accuracy of our predictions. As such, we calculated the
number of wins, draws and losses a team had at the point at which they played a given game, as well
as their current win or loss streak. We then used the best performing network architecture determined
above, and achieved a training accuracy of 55% with a development accuracy of 51%. However,
this increased accuracy meant that our model no longer predicted any home wins, as can be seen
by the comparison of the confusion matrices for these two models below. Despite this interesting
development, we believed that this demonstrated that past data did have an effect on the accuracy
of our prediction, which prompted us to explore how effective an LSTM could be in solving this
problem, as it takes into account previous information by default when making its prediction.

Home win Draw | Away Win Home win Draw | Away Win
Home Win 22 30 26 Home Win 0 20 58
Draw 26 45 16 Draw 0 39 48
Away Win 28 32 79 Away Win 0 22 117

5.3 Long Short-Term Memory

To find the optimal architecture for our sequence model, we once again tested a number of possibilities,
and used their development accuracies to compare them to one another. We tested architectures
with both 1 and 2 LSTM layers, which had either 16, 32, 64, 256, or 512 nodes per layer. We ran
these architectures for 100, 150, 300, and 500 epochs respectively, and eventually chose a one-layer
network with 32 nodes in that layer, trained for 300 epochs. This gave us a training accuracy of
56.81% and a development accuracy of 37.17%. From these accuracies, and the graph below, we
could clearly see that the model was over fitting the training set. When we ran the model for 500
iterations for example, it wasn’t uncommon to see a training accuracy of over 90%!

model loss

1100

1075

1050

1025

loss

1000

0975

0.950

0.925

0.900 T T T T T T T
o 50 100 150 200 250 300
epoch

As such, we knew we needed to adopt some regularization techniques to reduce this issue of over-
fitting. For our new architecture we limited our search to some of the best performing architectures
we had seen in our initial LSTM model, for example we had seen that a 1-layer LSTM outperformed
a 2-layer model in almost all cases so we did not re-explore these architectures. This time, however,
we incorporated a dropout with a keep probability of either 0.25, 0.5, or 0.75 after our LSTM layer,
and eventually settled on a best performing network with 64 nodes in the LSTM layer and a dropout
of 0.5. This gave us a training accuracy of 54.24% and a development accuracy of 47.34%, which

was much better than our original model. We could also see from our graph displaying the loss over
time that this network was suffering less from the issue of over fitting, as it was a much less linear
downward slope.

model loss
1150
1125
1100
- 1075
] 1050
1025
1000
0975
o 50 100 150 200 250 300
epoch
6 Conclusion/Future Work
Model Train Accuracy Dev Accuracy
Logistic 0.3573191 0.33881578
Regression
Neural Network 0.54893094 0.5131579
LSTM 0.5424 0.4737

To conclude, our three-layer neural network was the most successful algorithm that we tested. Despite
the fact that historical data seemed to improve the accuracy of our prediction, the LSTM was unable
to improve on the neural network. If we had more time we would try and gather more data on which
to train, in order to reduce our algorithms’ tendency to overfit the training data. Though we had
some success reducing this using dropout, an increased amount of data would have been even more
beneficial. Additionally, we would like to experiment with different architectures and different LSTM
variations, to see if these would improve on our classification accuracy, and maybe allow us to predict
not only the result of various games, but also the scoreline of these matches.

7 Contributions

We felt that the work was evenly distributed between the team and everyone pulled their weight.
Evgeny was primarily responsible for doing background research on the various implementations
people had already worked with in trying to solve this problem, as well as being the driving force
behind the work we did on the poster. Rohan and Seb evenly split the coding work to actually get the
model up and running, and all three of us contributed to this final write-up evenly. We really enjoyed
working together as a team and are proud of what we achieved during this course.

References

[1] Tax, Niek, & Yme Joustra. "Predicting the Dutch football competition using public data: A machine learning
approach." Transactions on Knowledge and Data Engineering 10.10 (2015): 1-13.

[2] Pettersson, Daniel, and Robert Nyquist. "Football Match Prediction Using Deep Learning." (2017).
[3] https://www.kaggle.com/hugomathien/soccer

[4] Bunker, Rory P. & Fadi Thabtah. "A machine learning framework for sport result prediction." Applied
Computing and Informatics (2017).

[5] McCabe, Alan, & Jarrod Trevathan. "Artificial intelligence in sports prediction.” Information Technology:
New Generations, 2008. ITNG 2008. Fifth International Conference on. IEEE, 2008.

[6] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

