When is Deep Multitask Learning Effective in NLP?
An Exploration on Cyberhate in Wikipedia

Abraham Starosta
Stanford University
starosta@stanford.edu

Abstract

Although Multitask Learning (MTL) has been ap-
plied successfullly to a wide range of tasks, when
to expect MTL gains in NLP largely remains an
open question. We explore this question through
a study of cyberhate on Wikipedia, with a dataset
that poses common challenges in real-word appli-
cations: noisy labels, class imbalance, and varying
dataset sizes across tasks. Our main contributions
are: (1) providing evidence that when successful,
MTL benefits from large auxiliary datasets tightly
related to the main task. We see a gain of 0.0065 in
ROC AUC on the main task as we increase the size
of the auxiliary task. If that was the average gain
for all tasks, it would take a Kaggle competitor
from the 2000th place right to the 1st place on the
public Kaggle leaderboard. (2) We observe that
class reweighting or rebalancing are not the an-
swer when you try to mitigate against a highly im-
balanced dataset. (3) Our results corroborate the
regularization effects of MTL.

1 Introduction to MTL in general

Although MTL has received lots of attention in the
past few years, people are often surprised to learn
that it has been around for a couple of decades.
[Ratner. A(2018)] explains the main reasons why
MTL has received an increasing amount of atten-
tion in the era of deep learning:

o MTL amortizes the cost of data acquisition:
organizations can pool labels across multi-
ple tasks, potentially improving the perfor-
mance of all tasks.

e Most real-world problems involve solving
related subtasks: for example, many text
classification tasks involve a hierarchical
ontology with different levels of granularity.

[Caruana(1997)] defines MTL as a way to im-
prove generalization by using domain information
in related tasks; what is learned for each task can
help others perform better. It does this by co-
learning NV tasks in parallel, using a shared rep-
resentation. Although MTL can focus on improv-
ing the performance of all tasks at once, the classic
approach is to have a “main” task which we are fo-
cusing on optimizing and a set of “auxiliary” tasks
which we hope boost performance for the main
task. It is likely that there is an auxiliary task that
can help your main task perform better.

It is worth briefly mentioning the relationship
between MTL and Transfer Learning. Transfer
learning is somewhat different because given
N - 1 “source” tasks, its only goal is to trans-
fer this knowledge in order to perform well on
the N™ “target” task whereas in MTL, all tasks
are trained together. Ultimately, both boil down
to solving a multi-objective optimization problem.
[Mou. L(2016)] found that MTL is very similar to
transfer learning in terms of model performance.

[Ruder(2017)] explains that there are two
main methods for implementing deep MTL: hard
or soft parameter sharing.

Task Al [Task B| [Task C| Task-
t i f specific
| ‘ l | | I layers

—

Shared
ayers

Figure 1: Hard parameter sharing: all tasks
share the same hidden layers. Picture from
[Ruder(2017)]

Task A Task B Task C
l 1 - |
i f i "
| -] Constrined
f t i
{ al o |

Figure 2: Soft parameter sharing: each task has
its own parameters and regularization is used to
encourage parameters to be similar across tasks.
Picture from [Ruder(2017)]

2 Related work: MTL in NLP

Studies have mixed results on when MTL is ex-
pected to be successful. This might be explained
by [Mou. L(2016)], finding that transferability in
NLP “is different from other domains like image
processing” so our conclusions from other sub-
fields in Al do not necessarily hold in NLP.

Some studies focus on task dataset sizes.
[Luong. M(2016)] studies MTL within a Seq2Seq
architecture applied to Machine Translation. They
trained a large Machine Translation main task with
small, medium, and large auxiliary tasks. MTL
generated the largest gains for the main MT task
when trained with a small auxiliary task. How-
ever, it is unclear how closely related the large
auxiliary task is to the main task used. In con-
trast, [Benton. A(2017)] shows bigger MTL gains
for settings with limited main task data.

Other studies focus on training proper-
ties and label distributions. [Bingel. J(2017)]
finds that MTL is more successful when
the loss curve for the main task plateaus
quickly. [Martinez. H(2017)] focuses more on the
label distributions and finds that “when success-
ful, auxiliary tasks with compact and uniform
label distributions are preferable.”

The closest study to our approach is
[Kerinec E.(2018)]. The researchers published
experiments with MTL on the 20 Newsgroup
benchmark dataset, in which documents are clas-
sified into 20 loosely related classes. The classes
can be represented as a hierarchy where the
top classes (recreation, computer, science, talk,
miscellaneous, etc), each with a varying number
of sub-classes. The authors then choose different
task pairs and correlate different features to the
amount of MTL gains compared to a baseline
single task model (STL). They looked at the

following features: Jensen-Shannon Divergence
(JSD), gradients of the loss curve at different
training epochs, logarithmic fits to the training
loss curves, and type-token ratios. They found
that the JSD between tasks is the most informative
feature, with the loss curve gradients being the
second most informative. However, we do have
reservations on this study’s conclusion on the
importance of JSD as a predictor for MTL gains.
We have observed that JSD is highly dependent
on the size of the task datasets. When one corpus
is very small, the JSD tends to be larger because
there is just not enough text in the small corpus to
be representative of general language properties.
In the 20 newsgroup dataset, where task sizes vary
substantially, the JSD could be too noisy.

3 Data

3.1 Why this dataset?

We chose to work with Kaggle’s Wikipedia Toxic
Comment dataset because with its noisy task hi-
erarchy and class imbalance, it resembles what an
engineer would encounter in the real world. One
of our goals is to gather insights that would trans-
late to real-world settings.

3.2 Dataset Overview

The dataset provides a total of 153,165 training
samples. Each sample is labeled as Toxic, Severe
Toxic, Obscene, Insult, Threat, Identity Hate.
Because labels were crowdsourced, the dataset
has what we would call a noisy task hierarchy.

Toxic

|Obscene| | Insult I

Severe | Identity | | I
Toxic | Hate Threat

Figure 3: Task Hierarchy.

The vast majority of the labels follow this hi-
erarchy, although a small percentage of 5% do not.
For example, most samples labeled as Obscene are
also labeled as Toxic, but a minority might be la-
beled as Obscene but not Toxic.

In the table below we provide the class distri-
bution:

H Task Positive Samples Percentage ”

Toxic 15,294 9.9%
Obscene 8,449 5.5%
Insult 7,877 5.1%
Severe Toxic 1,595 1.0%
Identity Hate 1,405 0.9%
Threat 478 0.3%

Total 153,165 100.0%

It is evident that the positive labels are very sparse,
and this is one of the challenges we attempt to
tackle.

Now, to give you a sense of the contents in the
comments, since they are quite interesting, we
would like to share word clouds for the largest
classes.

think

Figure 4: Normal.

Figure 5: Toxic.

Figure 6: Identity Hate.

We can see in the image above the words com-
monly used in toxic comments. This is a large
problem, not only in Wikipedia, but also in other

platforms like Twitter, Youtube, and Facebook.
Hatespeech is a problem worth working on.

4 Data Processing

4.1 Text Preprocessing

1. Comments are first tokenized using nltk’s
word tokenizer.

2. Then they are stemmed with nltk’s Porter-
Stemmer.

3. Tokens longer than 30 characters are filtered
out.

4.2 Text Featurization

We use sklearn’s Tfidf Vectorizer on unigrams, fil-
tering out english stopwords and keeping only the
top 10,000 features.

There are certainly other featurization strate-
gies such as using word embeddings that would
likely improve the model performance, but the
goal of our experiments is to study the behavior
of MTL models. Therefore, we have attempted to
use the most standard featurization strategy possi-
ble.

5 Models

5.1 MTL Model Architecture

e Hard parameter sharing: tasks share middle
representations.

e Input layer takes in 10,000 dimensional
samples.

e 2 hidden layers with 10 units each. We
avoid making the network too to avoid over-
fitting.

e Number of output heads is equal to the num-
ber of tasks being learned.

OO0O0O0O000O0

!

INPUTS

Figure 7: Our MTL architechture. Picture from
[Caruana(1997)]

5.2 STL Model Architecture

e Input layer takes in 10,000 dimensional
samples.

e 1 hidden layer with 5 units.

5.3 Code Framework

We use Snorkel MeTal’s easy-to-use interface to
train and evaluate MTL models as well as STL
models [Ratner. A(2019)]. The neural networks
are built using PyTorch. This is a project built and
maintained by Stanford’s Dawn Lab. We made our
best to contribute to the MeTal codebase and suc-
cessfully added a few features as well as proposed
multiple enhancements.

5.4 Training

We split the data with a 80/20 scheme. Kaggle
tests our predictions against their test set so we use
that as our test set.

Both our STL and MTL models are trained
with the same hyperparameters:

e Learning rate: 0.0001

e 20 epochs

e Batch size of 32

e No dropout or ¢3 regularization.

Our MTL model treats the main and auxiliary
tasks equally. Once the batch size is set, a batch of
that size for each task is calculated, contributing
some amount to the loss, and then a train step is
taken. After each epoch, we compare the MTL
model’s validation score for the main task against
previous epochs, and save the one with the best

score. Thus, we optimize for the best MTL model
for the main task. This is the same for the baseline
STL model training process, where we keep the
model with the best validation score for the single
task.

6 Experiments and Discussion

6.1 Jensen-Shannon Divergence

Since multiple papers suggest that JSD between
tasks has high correlation to MTL gains, we
wanted to get a sense of the JSD between our
tasks.

To compute the JSD, we created a probability
distribution over all unigrams in the train sets of
each task. Then, we normalize them with a soft-
max. The JSD values are very small (below 10%)
so we normalize those values by the maximum
JSD value in order to facilitate a visual inspection.

Jensen-Shannon Divergence (between train-set unigrams)
toxic 034 048
obscene 022 036 052
insult 039 053
039 . 063 081

SEVE'E_!O)(IC

identity_hate

053 063 . 100

Figure 8: JSD between task training sets (using
unigram count distribution).

Since all the comments come from the parent
Toxic class, we would expect JSD to be small and
similar for all tasks pairs. However, we observe
that the three largest tasks (Toxic, Obscene, In-
sult) have much lower JSD compared to other task
pairs.

In addition, we see in general that the smaller
tasks have higher JSD. Except for the Toxic/Insult
task pair, JSD increases as the dataset size de-
creases. We believe this casts doubt on the util-
ity of JSD as a predictor for MTL gains because it
seems to be tightly correlated to dataset size.

6.2 STL Baselines

We trained STL models on each task in order to
have a baseline performance to which we can com-
pare MTL performance.

H Task STL F1 Score H
Toxic 0.75
Obscene 0.78
Insult 0.65
Severe Toxic 0.43
Identity Hate 0.42
Threat 0.37

With our simple scheme we got an ROC-AUC
of 0.9692 on the test set. For context, this is
roughly in the top 75% of Kaggle, which means
our data split, basic featurization strategy and STL
models are a good place to start. Since our goal
was not to optimize overall score, but specifically
study gains from MTL, we left it at this.

6.3 MTL Gains
F1 delta between MTL & STL Baseline
Toxic/Obscene
Toxic/insult

Toxic/Severe Toxic
Toxic/identity Hate

Toxic/Threat

Figure 9: F1 MTL gains for task pairs with Toxic
as auxiliary task.

Insights:

o Auxiliary task is always hurt: we believe
this is partly because of our training process,
in which we save the model that performs
best on the main task. This opens another
line of inquiry on how to mitigate this in the
case where you care about improving per-
formance for all tasks instead of focusing on
a main task.

o All main tasks have gains except for Severe
Toxic: this is actually very interesting be-
cause you would expect Severe Toxic to ben-
efit from the Toxic auxiliary task, since you
would expect the features to be tightly cor-
related. This is hard to explain, but our hy-
pothesis is that the features are so correlated
that this causes overfitting.

e [nsult received a relatively large gain: this
could have been expected since we previ-
ously found that based on JSD, Insult was
the most closely related task to our auxil-
iary Toxic task. Although JSD is tightly cor-
related to dataset size, this does provide ev-
idence in favor of JSD’s importance in pre-
dicting MTL gains.

6.4 MTL gains with smoothly growing
auxiliary task

In the previous experiment, we saw that Insult was
relatively successful for MTL. Thus, we will keep
studying the effect of the number of auxiliary pos-
itive examples using the Insult task.

In this experiment, we start with a roughly
equal number of positive examples for both the
main and auxiliary task, and then gradually incre-
ment the number of auxiliary positive examples.

While using the same validation set and train-
ing parameters constant, we smoothly increase the
number of auxiliary positive examples and track
its effect on the main task performance.

We can see the main task gains increase as
we include more auxiliary positive examples.

00065

00060

00055

0.0050

00045

Target Validation ROC-AUC

00040

00035

b % 4 6 8 10 12
Aux Positive Examples

Figure 10: The gains on the main task increase as
the number of auxiliary positive examples (x1000)
increases.

For context, if the average task performance
improved by that amount, it would be the differ-

ence between the 1st place and the 2000th place
on the public Kaggle leaderboard.

Our initial hypothesis was that MTL gains
would increase as the amount of auxiliary samples
increase. The reason lies in the close relationship
between MTL and Transfer Learning. It is widely
accepted that Transfer Learning is effective when
there is a vast amount of data for the auxiliary task,
but limited data for the main task. Since MTL and
Transfer Learning are on the same spectrum, in
which multiple losses are being optimized, it was
likely that this property would hold for both.

Another interesting observation is that train
loss increases while the validation loss de-
creases.

011) —=— target_train_loss
~— ftarget_val_loss

010
009

008

0.07 P

0.06
005
004

6000 7000 8000 9000 10000 11000 12000
aux_pos_size

Figure 11: Orange: Validation loss. Blue: Train
loss.

This shows MTL’s effectiveness as a regular-
izer. MTL introduces inductive bias by prefer-
ring a model that explains multiple tasks, which
reduces the chance of overfitting.

6.5 MTL: addressing class imbalance by
reweighting and oversampling

Our dataset labels are highly imbalanced towards
the negative class, so we attempted to fix that im-
balance on the MTL setting with two strategies:
class reweighting, and oversampling of positive
samples.

The following table shows the F1 score delta
of MTL over STL for reweighting and oversam-

pling.

” Task Reweighting Oversampling H

Obscene 0.03 0.01
Insult -0.17 -0.15
Severe Toxic 0.01 -0.04
Identity Hate 0.02 -0.01
Threat 0.08 0.01

We saw some tasks improve and some worsen,
but overall, it seems that neither technique con-
sistently improved results over our STL base-
lines. Reweighting seems to help in more cases
than oversampling, but the gains don’t seem to be
conclusive. We believe class imbalance in MTL
should be tested in multiple datasets to get a better
conclusion.

There might be multiple reasons for this.
Reweighting causes overfitting in some cases like
for the Insult, and oversampling when the class
imbalance is so large seems to only add redundant
information.

7 Conclusions

We have investigated MTL empirically on an
NLP application with a noisy task hierarchy, with
highly related tasks and imbalanced labels. We
have gathered these insights:

e The more samples for the auxiliary task,
the higher the gains from MTL on the main
task.

e We have corroborated that MTL serves as
an effective regularizer.

e (lass reweighting or positive oversampling
did not help MTL with the problem of class
imbalance.

e JSD seems to correlate highly with corpus
sizes when the sizes are small and have
high variance. An exploration into this issue
would be worth it for the sake of research
reliability.

Given that our experiments were done only on
one dataset, these are certainly not final conclu-
sions.

In terms of insights for fighting hate speech,
we have observed gains from MTL and thus we
propose leveraging MTL to fight hatespeech.

8 Future Work

Firstly, we plan to run the same experiment, but
run it on all main/auxiliary task pair combinations.

Then, we plan to run our experiments on other
text datasets with similar characteristics in order
to increase the confidence primarily in our con-
clusion that MTL benefits from large auxiliary
datasets.

Afterwards, these are the following questions
that we plan on exploring:

e What is the main factor in predicting gains
from MTL?

e How do you ensure all tasks get a boost
from MTL?

e How useful is JSD as a measure of task sim-
ilarity in an NLP context?

e How does class imbalance affect MTL and
how do you mitigate it?

9 Acknowledgements

I would like to thank Alex Ratner for offering his
invaluable feedback at a weekly manner, and Stan-
ford’s InfoLab for offering constant support. I am
lucky have the opportunity to work with them.

References

[Benton. A(2017)] Mitchel. M Hovy. D

Benton. A. 2017. Multitask learn-
ing for mental health conditions with
limited social media data. EACL

http://www.aclweb.org/anthology/E17-1015.

[Bingel. J(2017)] Sogaard. A Bingel. J. 2017.
Identifying beneficial task relations for
multi-task learning in deep neural networks
https://arxiv.org/pdf/1702.08303.pdf.

[Caruana(1997)] Rich Caruana. 1997. Multitask
learning 1. https://www.cs.cornell.edu/ caru-
ana/mlj97.pdf.

[Kerinec E.(2018)] Sogaard A. Braud C. Ker-

inec E. 2018. When does deep multi-
task learning work for loosely related
document classification tasks? ACL

http://aclweb.org/anthology/W18-5401.

[Luong. M(2016)] Le. Q Sustskever. I Vinyals.
O Kaiser. L Luong. M. 2016. Multitask
sequence to sequence learning. ICLR
https://nlp.stanford.edu/pubs/luong2016iclr,, ults.pdf .

[Martinez. H(2017)] Plank. B Martinez. H.
2017. When is multitask learning ef-
fective? semantic sequence prediction
under varying data conditions. EACL
http://www.aclweb.org/anthology/E17-1005.

[Mou. L(2016)] . et al Mou. L. 2016. How trans-
ferable are neural networks in nlp applications?
Arxiv https://arxiv.org/pdf/1603.06111.pdf.

[Ratner. A(2019)] Hancock. B Dunnmon.

J Sala. F Pandey. S R. C Ratner. A.
2019. Training complex models with
multi-task weak supervision. AAAT

https://arxiv.org/pdf/1810.02840.pdf.

[Ratner. A(2018)] Hancock. B R. C Ratner. A.
2018. The role of massively multi-task
and weak supervision in software 2.0. ACL
https://ajratner.github.io/assets/papers/softwares,,, mt,ision.pd

[Ruder(2017)] Sebastian Ruder. 2017. An
overview of multi-task learning in deep neural
networks .

