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Abstract

While much progress has been made in capturing high-
quality facial performances using motion capture mark-
ers and shape-from-shading, high-end systems typically
also rely on rotoscope curves hand-drawn on the image.
These curves are subjective and difficult to draw consis-
tently; moreover, ad-hoc procedural methods are required
for generating matching rotoscope curves on synthetic ren-
ders embedded in the optimization used to determine three-
dimensional facial pose and expression. We propose an
alternative approach whereby these curves and other key-
points are detected automatically on both the image and the
synthetic renders using trained neural networks, eliminat-
ing artist subjectivity and the ad-hoc procedures meant to
mimic it. More generally, we propose using machine learn-
ing networks to implicitly define deep energies which when
minimized using classical optimization techniques lead to
three-dimensional facial pose and expression estimation.

1. Introduction

Face animation is an open area that remains challenging
for researchers and practitioners, particularly in the captur-
ing of details around the eyes and lips. As such, significant
manual effort is still required in various stages including
initial model alignment and fine-tuning blendshapes such
that the resulting render visually resembles the correspond-
ing motion capture image stills, called “plates.” Our project
seeks to automate manual parts of the face capture pipeline
by leveraging pre-trained deep neural networks. We pro-
pose the use of sparse facial landmarks per frame to tar-
get facial pose (e.g. rotation and translation) and expression
(e.g. blendshape model weights) with an anatomical model
of an actor’s face. After per-frame alignments, we propose
to improve temporal coherence by using optical flow. Fur-
ther, we modify existing network architectures to allow our
system to be fully differentiable for non-linear optimization.

More concretely, we take as input a short facial per-
formance of an actor, and a blendshape rig for the actor’s
face. The goal of the system is to automatically find for

each frame the rotation and translation parameters of the
3D model as well as the blendshape weights, so that when
animated, the model reproduces the actor’s performance.

2. Related Work

Face Alignment: Deep face alignment networks are
generally classified into coordinate regression models [11,
13, 27, 31], where a direct mapping is learned between
the image and the landmark coordinates, and heatmap re-
gression models [2, 4, 32], where prediction heatmaps are
learned for each landmark. Heatmap-based architectures
are generally derived from stacked hourglass [2, 4, 10, 21]
or convolutional pose machine [29] architectures used for
human body pose estimation. Pixel coordinates can be ob-
tained from the heatmaps by applying the argmax operation;
however, [5, 26] use soft-argmax to achieve end-to-end dif-
ferentiability.

Optical Flow: In this project we focus on deep opti-
cal flow networks. End-to-end methods for learning optical
flow using deep networks were first proposed by [6] and
later refined in [9]. Other methods include DeepFlow [30],
etc. use deep networks to detect correspondences. These
methods are generally evaluated on the Middlebury dataset
[1], the KITTI dataset [8], and the MPI Sintel dataset [3].

Using deep networks such as VGG-16 [25] for losses has
been shown to be effective for training other deep networks
for tasks such as style transfer and super-resolution [12].
Furthermore, deep networks have been used in energies for
traditional optimization problems for style transfer [7], tex-
ture synthesis [24], and image generation [19, 28].

3. Dataset

We used two pre-trained networks for this project: 3D-
FAN [2] and FlowNet2 [23]. 3D-FAN was trained on the
LS3D-W dataset [2], and FlowNet2 was trained on Fly-
ingChairs and FlyingThings3D [20].

We estimate the facial pose and expression on a moder-
ately challenging performance captured by a single ARRI
Alexa XT Studio running at 24 frames-per-second with an
180 degree shutter angle at ISO 800 where numerous cap-
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Figure 1. An overview of our approach: we use our three-dimensional face model of the actor (a) and estimate the albedo and spherical
harmonics lighting in a neutral pose (b). Then, we can deform the face model into a variety of poses by changing the rigid parameters ¢ and
t and blendshape parameters w (c), and generate synthetic images by rendering the face model in those poses (d). We feed that synthetic
render through the network to produce a set of outputs (e), which are then compared to the outputs produced by the same network when

feeding it the captured image (f).

tured images exhibit motion blur. These images are cap-
tured at a resolution of 2880 x 2160, but we downsample
them to 720 x 540 before feeding them through our pipeline.

4. Overview

In this project we propose a general strategy that incor-
porates pre-trained deep neural networks into classical opti-
mization methods. Specifically, the energy to be minimized
in the optimization is based on outputs of neural networks.
We take the following approach: First, we estimate an ini-
tial rigid alignment of the 3D face model to the 2D plate
image using a facial alignment network. Next, we estimate
an initial guess for the jaw and mouth expression using the
same network. Finally, we temporally refine the results and
insert/repair failed frames whenever necessary using an op-
tical flow network.

We use a blendshape model with linear blend skinning
for a single six degree of freedom jaw joint. Let w denote
the parameters that drive the face triangulated surface z(w)
[15]. The rigid transformation is given by the Euler angles
0, its rotation matrix R(f) and a translation ¢ such that the
final vertex positions are

zr(0,t,w) = R(0)x(w) + ¢ (1)

Our goal is to determine the parameters 6, ¢ and w that
best match a given captured image F'*. The geometry xp
is rendered using OpenDR [17] obtaining a rendered im-
age F'(xzr). Both the pixels of the captured image F™* and
the pixels of the rendered image F'(xR) are fed through the
same deep network to get two sets of outputs N (F™*) and
N(F). See Figure 1. We use the Ly norm of the difference
between them

IN(F*) = N(F(zr(0,t,w)))ll2 2

as the objective(energy) function to minimize via nonlinear
least squares. The resulting nonlinear least squares prob-

lem is solved using the Dogleg method [18] as implemented
by Chumpy [16]. This method requires computing the Ja-
cobian of the energy function via the chain rule with re-
spect to the parameters to solve. We use OpenDR to com-
pute OF/0z g, and Equation 1 yields dxr/00, Oxgr/0t,
Oxp/0x. Ox/Ow is handled by the differentiable blend-
shape rig, and ON/OF is computed by back-propagating
through the network using PyTorch [22].

5. Rigid Alignment

We first solve for 6 and ¢ using the pre-trained 3D-FAN
network [2] as N. The images need to undergo several
transformations before being fed into the network. First,
we use a CNN-based face detector implemented by Dlib
[14] to find the bounding boxes of the face. We then
scale the bounding box to contain the entire face and crop
it out, resizing it to 256 x 256 to feed into the network.
We denote the face detection with D, cropping with C'
and resizing with S. The input into the network is thus
S(C(F(zgr), D(F(zRr))), D(F(zR))), where the crop and
resizing depends on the face bounding box.

3D-FAN outputs a tensor of size 68 x 64 x 64, i.e. each
of the 68 landmarks has a 64 x 64 heapmap specifying the
likelihood of a particular 4 x 4 patch on the 256 x 256 im-
age. Using argmax to determine landmarks position is not
differentiable, so we instead follow the approach of [5, 26]
and apply a soft-argmax function to the heatmaps to get an
expected value of the landmark coordinate.

That is, given the marker position m; computed using
the argmax function on heatmap H;, we use a 3 x 3 patch of
pixels M; around m; to compute the soft-argmax position
as

H;
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where 8 = 50 is set experimentally and H;(m) returns the
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heatmap value at a pixel coordinate m. We found that using
a small patch around the argmax landmark positions gives
better results than running the soft-argmax operation on the
entire heatmap.

The soft-argmax function returns an image coordinate on
the 64 x 64 image, and these image coordinates need to be
remapped to the full resolution image to capture translation
between the synthetic face render and the captured image.
Thus, we apply inverse rescale S.! and crop operations
CL ie.m; = C, (S, (41;, D), D). The multiplica-
tion by 4 rescales from the 64 x 64 heatmap to the original
256 x 256.

6. Expression Estimation

After the rigid alignment determines 6 and ¢, we solve for
an initial estimate of the mouth and jaw blendshape param-
eters w. We use 3D-FAN in the same manner as discussed
in previous section to solve for w while keeping the rigid
parameters 6 and ¢ fixed. It is also sometimes beneficial or
even preferred to allow # and ¢ to be modified somewhat at
this stage as well. A prior energy term that penalizes these
deviations from the values computed from the rigid align-
ment stage can also be added to the minimization.

7. Optical Flow for Missing Frames

The face detector used in Section 5 can sometimes fail,
e.g. on our test sequence, the Dlib’s HOG-based detector
failed on 20 frames while Dlib’s CNN-based detector suc-
ceeded on all frames. We thus propose using optical flow
networks to infer the rigid and blendshape parameters for
failed frames by “flowing” these parameters from surround-
ing frames where the face detector succeeded. This is ac-
complished by assuming that the optical flow of the syn-
thetic render from one frame to the next should be iden-
tical to the corresponding optical flow of the captured im-
age. That is, given two synthetic renders F and F5 and
two captured images F}" and F', we can compute two opti-
cal flow fields N(Fy, F») and N (Fy, Fy) using FlowNet2
[9]. We resize the synthetic renders and captured images to
a resolution of 512 x 512 before feeding them through the
optical flow network. Assuming that F3 is the image the
face detector failed on, we solve for the parameters p2 of
F, starting with an initial guess p;, the parameters of F1, by
minimizing the L2 difference between the flow field vectors
IN(F, Fy)— N(Fy, F3)||2. ON/OF, can be computed by
back-propagating through the network.

8. Temporal Refinement

Since we solve for the rigid alignment and expression
for all captured images in parallel, adjacent frames may
produce visually disjointed results either because of noisy

facial landmarks detected by 3D-FAN or due to the non-
linear optimization converging to different local minima.
Thus, we also use optical flow to refine temporal incon-
sistencies between adjacent frames. We adopt a method
that can be run in parallel. Given three sequentially cap-
tured images Fy, F5, and F3, we compute two optical
flow fields N(Fy, F5) and N(F5, Fy). Similarly, we can
compute N (Fy, F3) and N(F, F3). Then, we solve for
the parameters py of F> by minimizing the sum of two
L2 norms ||N(Fy, F5) — N(F1, F)|2 and | N(F5, F5) —
N (Fs, F3)||2. The details for computing the Jacobian fol-
low that in Section 7. Optionally, one may also wish to add
a prior penalizing the parameters py from deviating too far
from their initial value. Here, step k of smoothing to obtain
anew set of parameters p¥ uses the parameters from the last
step pi—ﬂ_: 11; however, one could also use the updated param-
eter values p¥,; whenever available in a Gauss-Seidel style
approach.

Alternatively, one could adopt a self-smoothing ap-
proach by ignoring the capture image’s optical flow and
solving for the parameters p that minimize ||N(F}, Fy) —
N(F, F3)||2. Such an approach in effect minimizes the
second derivative of the motion of the head in the image
plane, causing any sudden motions to be smoothed out;
however, since the energy function contains no knowledge
of the data being targeted, it is possible for such a smoothing
operation to cause the model to deviate from the captured
image.

While we focus on exploring deep learning based tech-
niques, more traditional smoothing/interpolation techniques
can also be applied in place of or in addition to the proposed
optical flow approaches. Such methods include: spline fit-
ting the rigid parameters and blendshape weights, smooth-
ing the detected landmarks/bounding boxes on the captured
images as a preprocess, smoothing each frame’s parameters
using the adjacent frame’s estimations, etc.

9. Results

In this section we present the results of applying our
method to the performance data described in Section 3. We
assume that the camera intrinsics and extrinsics have been
pre-calibrated, the captured images have been undistorted,
and that the face model described in Equation 1 has already
been created. Furthermore, we assume that the face’s rigid
transform has been set such that the rendered face is initially
visible and forward-facing in all the captured viewpoints.

9.1. Rigid Alignment

We estimate the rigid alignment (i.e. # and t) of the
face using 3D-FAN. We use an energy By = W(N(F) —
N(F*)) where N are the image space coordinates of the
facial landmarks as described in Section 5 and W is a per-
landmark weighting matrix. Furthermore, we use an edge-
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Figure 2. We use optical flow to infill frames where the face detector fails. Starting from frame 1142, the optimization moves the head to
match the optical flow of the synthetic render to the optical flow of the captured image. After solving for frame 1145, we perform another
round of optimization except that we start from frame 1146 instead; this way, each frame will capture optical flow information from both
anchor frames. Using optical flow allows the mouth to stay open longer (e.g. in frame 1144) than what one would obtain using simple

interpolation.

preserving energy o = Y, (mf —ml ) — (mf —ml )
where L " are the landmark positions on the captured
image and /! are the landmark positions on the syn-
thetic renders to ensure that the face does not erroneously
grow/shrink in projected size as it moves towards the tar-
get landmarks, which may prevent the face detector from
working.

First, we only solve for ¢ using all the landmarks except
for those around the jaw to bring the initial state of the face
into the general area of the face on the captured image. We
prevent the optimization from overfitting to the landmarks
by limiting the maximum number of iterations. Next, we
solve for both # and ¢ in three steps: using the non-jaw
markers, using only the jaw markers, and using all markers.
We perform these steps in stages as we generally found the
non-jaw markers to be more reliable and use them to guide
the face model to the approximate location before trying to
fit to all existing markers.

9.2. Expression Estimation

We run a similar multi-stage process to estimate facial
expression using the detected 3D-FAN landmarks. We use
the same energy term £ as Section 9.1, but also introduce
L2 regularization on the blendshape weights Fy = A\w
with A = 1 x 102 set experimentally. In the first stage,
we weight the landmarks around the mouth and lips more
heavily and estimate only the jaw open parameter along
with the rigid alignment. The next stage estimates all avail-
able jaw-related blendshape parameters using the same set
of landmarks. The final stage estimates all available jaw
and mouth-related blendshapes as well as the rigid align-
ment using all available landmarks. This process will also
generally correct any overfitting introduced during the rigid
alignment due to not being able to fully match the markers
along the mouth.

Camera A

Camera B

(a) Render

(b) Image

Figure 3. We trivially extend Sections 9.1 and 9.2 to handle land-
marks from two cameras by simply combining the objective func-
tions.

9.3. Optical Flow Infill

Consider, for example, Figure 2 where frames 1142 and
1146 were solved for successfully and we wish to fill frames
1143, 1144, and 1145. We visualize the optical flow fields
using the coloring scheme of [1]. We adopt our proposed
approach from Section 7 whereby the parameters of frames
1143, 1144, and 1145 are first solved for sequentially start-
ing from frame 1142. Then, the frames are solved again in
reverse order starting from frame 1146. This back-and-forth
process which can be repeated multiple times ensures that
the infilled frames at the end of the sequence have not accu-



mulated so much error that they no longer match the other
known frame.

Using optical flow information is preferable to using
simple interpolation as it is able to more accurately capture
any nonlinear motion in the captured images (e.g. the mouth
staying open and then suddenly closing). We compare the
results of our approach of using optical flow to using linear
interpolation for ¢ and w and spherical linear interpolation
for # in Figure 4.

9.4. Multi-Camera

Our approach can trivially be extended to multiple cali-
brated camera viewpoints as it only entails adding another
duplicate set of energy terms to the nonlinear least squares
objective function. We demonstrate the effectiveness of this
approach by applying our approach from Sections 9.1 and
9.2 to the same performance captured using an identical
ARRI Alexa XT Studio from another viewpoint. See Figure
3.

We also compare the rigid alignment estimated by our
automatic method to the rigid alignment created by a skilled
matchmove artist for the same performance. The man-
ual rigid alignment was performed by tracking the painted
black dots on the face along with other manually tracked fa-
cial features. In comparison, our rigid alignment was done
using only the markers detected by 3D-FAN on both the
captured images and the synthetic renders. Our approach
using only features detected by 3D-FAN produces visually
comparable results. In Figure 5, we assume the manually
done rigid alignment is the “ground truth” and quantita-
tively evaluate the rigid alignment computed by the monoc-
ular and stereo solves. Both the monocular and stereo
solves are able to recover similar rotation parameters, and
the stereo solve is able to much more accurately determine

Optical Flow

Interpolation

1143 1144 1145

Figure 4. Using optical flow to interpolate missing frames pro-
duces results that better match the plate than simple linear inter-
polation. Notice how the lips and the face boundary match better
in the optical flow results (particularly in frame 1144) than in the
simple interpolation results.

the rigid translation. We note, however, that it is unlikely
that the manually done rigid alignment can be considered
“ground truth” as it more than likely contains errors as well.

9.5. Temporal Refinement

As seen in the supplementary video, the facial pose and
expression estimations are generally temporally inconsis-
tent. We adopt our proposed approach from Section 8.
This attempts to mimic the captured temporal performance
which not only helps to better match the synthetic render to
the captured image but also introduces temporal consistency
between renders. While this is theoretically susceptible to
noise in the optical flow field, we did not find this to be a
problem.

10. Conclusion and Future Work

We have proposed and demonstrated the efficacy of a
fully automatic pipeline for estimating facial pose and ex-
pression using pre-trained deep networks as the objective
functions in traditional nonlinear optimization. Such an ap-
proach is advantageous as it removes the subjectivity and
inconsistency of the artist. Our approach heavily depends
upon the robustness of the face detector and the facial align-
ment networks, and any failures in those cause the opti-
mization to fail. Currently, we use optical flow to fix such
problematic frames, and we leave exploring methods to au-
tomatically avoid problematic areas of the search space for
future work. Furthermore, as the quality of these networks
improve, our proposed approach would similarly benefit,
leading to higher-fidelity results. While we have only ex-
plored using pre-trained facial alignment and optical flow
networks, using other types of networks (e.g. face segmen-
tation, face recognition, etc.) and using networks trained
specifically on the vast repository of data from decades of
visual effects work are exciting avenues for future work.
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Figure 5. Assuming the manually done rigid alignment is the
“ground truth,” we measure the errors for rigid parameters for the
monocular and stereo case.



11. Contributions

Work for this project was divided into the two deep net-
works used for our optimization: 3D-FAN and FlowNet2.
Jane worked on writing the optimization solver for rigid
alignment/expression estimation using the 3D-FAN land-
mark detection network, and David worked on writing
the optimization solver for in-fill and temporal refinement
using the FlowNet2 optical flow network. The full paper
for this project can be found at: https://arxiv.
org/abs/1812.02899 and supplementary video
is at: https://drive.google.com/file/d/
101uEeg3N6JkrkgCN1AhJMIPVAMV2unYG/view?
usp=sharing. Source code specific to this project can be
found at: https://github.com/janehwu/cs230.

We would like to thank Michael Bao and Professor Ron
Fedkiw for their guidance on this project.
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