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Abstract

Melanoma is one of the most dangerous skin cancers and the segmentation of skin
lesions from dermatoscopic images is normally one of the first steps in its correct
diagnosis. In this work, we propose the use of Dense U-nets for performing this
task. Through experiments conducted in the dataset of the 2017 ISIC challenge,
we show that by using dense U-nets we can achieve comparable performance to
ordinary U-nets or the 2017 ISIC winning architecture, while reducing the number
of needed parameters by as large as 91%.

1 Introduction

Skin cancer is one of the most common types of cancer, and, although not as common as other
types of skin cancer, melanoma presents a higher mortality rate. It is estimated by the National
Cancer Institute (NCI) that it represents the 5.3% of all new cancer cases (1). Additionally, there
is a decreasing number of dermatologists per capita (2) making the need for automatic methods
more imperative. Furthermore, in some areas of developing countries the lack of trained physicians
jeopardizes the timed diagnosis of melanoma. Accordingly, there is growing interest in developing
automatic methods for correct and well-timed diagnoses of Melanoma. Usually, the first step in this
automatic pipeline is the correct segmentation of melanoma lesions, which enables the computation
of some geometric and or texture features of the lesion that are helpful for radiologists or that helps
classifier systems by removing unnecessary information.

This project centers on the segmentation of melanoma lesions from dermatoscopic images (Images
of the skin obtained using a high quality magnifying lens and lighting system) using deep learning
techniques. The dataset was obtained from Tasks 1 of the 2017 International Skin Imaging Collabo-
ration (ISIC) challenge (2), where the objective is to predict a binary mask from a dermatoscopic
image which contains only the skin lesion. An example of a typical input image and the groundtruth
segmentation is shown in Figure?2.

2 Related work

Different approaches for segmentation of melanoma or skin lesions have been proposed, which we
can categorize into classical and learning-based methods. In the former, existing literature have
proposed using different methods such as Fuzzy-logic thresholding (3), level-set segmentation (4),
and deformable geometric models (5). As for learning approaches, the top three participants of
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the ISIC challenge used deep learning based methods. The top result correspondent to a Fully
convolutional-deconvolutional (6) that includes ensembling of 6 trained models. The second place (7)
used an U-net and an ensemble of 10 models. The third place third (8) used a U-net with residual
units and additional training data from another dataset. The reported Dice coefficients for these three
works are 0.87, 0.86 and 0.86 (Respectively, Jaccard indices of 0.765, 0.762 and 0.760).

3 Dataset

The dataset was obtained from Task 1 of the 2017 International Skin Imaging Collaboration (ISIC)
challenge, which contain approximately 2750 labeled examples consisting of a dermatoscopic image
and the corresponding binary mask groundtruth manually delineated by physicians (9). The dataset
is already divided into 2000 training examples, 150 development/validation examples, and 600 test
examples. We decided to keep this distribution in order to have a common assessment with the
previous winner of the competition. Although a 2018 version of the challenge exists, validation
and test groundtruths, as well as full results disclosures, had not been yet released at the time the
project was started. Accordingly, we decided to use the 2017 version. The input images are of varied
resolution and thus were resized to a common size of 192 x 256 pixels along with their respective
groundtruth masks. Each image was normalized by subtracting the mean and dividing by its standard
deviation. We tried the inclusion of data augmentation including rotation, horizontal translation and
zooming but the results were not significantly different from the not-augmented dataset.

4 Methods

We tested 4 architectures for solving the current problem: [i] U-net (10), [ii] the Winner of 2017
which corresponds to a Fully convolutional-deconvolutional network (6), [iii] an Small Dense U-net,
and [iv] a larger Dense U-net. [iii] and [iv] are adapted from (11).

4.1 U-net

The ordinary U-net had 4 pooling layers and 2 convolution layers per pooling layer with approximately
7.8 million parameters (as defined in (10)). For initial comparisons we used a U-net with binary
crossentropy (CE) loss, however, we noticed better results when using combined CE and dice loss
(CE+D), so a combined loss was used for all other comparisons.
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4.2 Fully convolutional-deconvolutional network

The previous competition winner’s architecture (6) has upsampling and deconvolution layers on the
decoding side of the U-net (as opposed to deconvolution and convolution for all of the other U-nets
tested here). As the winner did not provide a public implementation of their model, we followed the
guidelines in (6) to the best of our knowledge. This network consists of 26 layers and approximately
5.0 M parameters.

4.3 Dense U-nets

Two additional dense U-net architectures (11) were compared as well. A standard dense U-net is
shown in Figure 1). The small dense U-net has 4 pooling layers and 1 dense block per pooling layer
in addition to 1 dense block at the center of the U-net. Each dense block then contains alternating 8
convolution layers with filter size (2,2) and 8 convolution layers with filter size (1,1) (i.e. bottleneck
layers), all with a growth rate of 2. The larger dense U-net has 4 pooling layers and 1 dense block per



pooling layer. By contrast, each dense block has alternating 24 convolution layers with filter size
(2,2) and 24 convolution layers with filter size (1,1) (i.e. bottleneck layers), all with a growth rate
of 2. The specific amount of layers and growth rate parameters were heuristically chosen to test a
dense U-net with approximately 10x less parameters than an ordinary U-net (in the case of the small
U-net) and approximately 2-3x less parameters than a ordinary U-net (in the case of the larger U-net).
Growth rate was reduced from 12 (as defined by the original densenet paper (11)) to 2 in order to
keep the amount of parameters small while allowing for an enormous amount of depth in the tested
dense U-nets (i.e. the small dense U-net has 375 layers and the larger dense U-net has 1095 layers).
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Figure 1: Generic dense U-net where each red downward arrow represents a pooling layer and each
grey arrow represents concatenation. Each dense block varies in depth (alternating 8 convolution/8
bottleneck for the small dense U-net and alternating 24 convolution/24 bottleneck for the larger U-net)
and has a growth rate of 2.

4.4 Post-processing

We also implemented the post processing algorithm described in (6), which consists on a initial
lenient thresholding which allows to select the biggest predicted continuous region and its centroid.
A second, more strict threshold is then applied to the original image and after dilation the region
contained the centroid is selected. The postprocessing has as main objective conserving only one
contiguous region in the predicted mask.

S Experiments

All networks were programmed in the Keras framework (12) with a TensorFlow backend. All
architectures were trained until convergence using Adam optimizer with a learning rate of 0.0001
which was heuristically chosen as we found that when using higher values the training did not
converge. A mini-batch size of 16 was chosen as a compromise between computational speed and
the GPU memory available. The validation dice was monitored during training and the model with
maximum validation dice was used as the final model for testing. The segmentation task for each
architecture was evaluated in terms of the Dice coefficient, defined for two set of points A and B as:
2|AN B|
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In this case, A would be the predicted mask and B would be the groundtruth. Due to confidentiality of
some sections of the code, instead of uploading the code, we have shared a private gitlab repository
with the two co-head TAs of the course.

6 Results

The number of parameters and dice coefficient in train, validation and test of the different models
are shown in Table 1. We observe that almost all models achieve a comparable dice coefficient
of 0.81-0.83. Additionally, the addition of postprocessing provides a 0.01-0.02 increase in dice
coefficient in all cases. Example predictions for one of the input test images is shown in Figure 2. It
is observed that most predictions are equivalent and that postprocessing helps eliminate confounding
regions.
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Function ters Dice Dice :
cessing)
grdinary CE 7.8M 0.85 0.90 0.77 0.80
unet
ordinary || epop 7.8M 0.89 0.91 0.83 0.84
unet
previous
c"g‘(}’:‘" CE+D 5.0M 0.85 0.92 0.81 0.83
winner
small
dense CE+D 0.7M 0.96 0.93 0.79 0.81
unet
fienise CE+D 2.7M 0.97 0.93 0.82 0.83
unet

Table 1: Dice coefficient obtained for the different models.
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(a) Input (b) Groundtruth (c) U-net (CE only) (d) U-net

(h) Small Dense U-net

(e) previous winner (f) Dense U-net (g) Small Dense U-net (with postprocessing)

Figure 2: Example of Predicted images with the different methods.
7 Discussion

As observed in the two first rows of Table 1, the use of a CE+D loss instead of only CE provides
significant enhancements in performance. This can be explained by the fact that CE only compares
in terms of a pixel-wise metric while CE+D takes into account the overlap of the full regions. We
obtained similar performances in the range of a dice coefficient of 0.81-0.83 using ordinary U-nets,
the 2017 winner’s network and the dense U-nets, however the use of dense U-nets provide a reduction
in the number of needed parameters of as large as 91% with respect to the vanilla U-net. The results
also suggest that in most methods, training did not suffer from overfitting as Training and Validation
dice coefficients are comparable (except for in the cases of both Dense U-Nets). There is, however,
an apparent difference between the validation and test scores in all runs. This apparent difference is
likely due to an underlying issue with the ISIC challenge data where validation and test images come
from different distributions.

To test this hypothesis, from the groundtruth images, we computed the percentage area of image
that the lesion occupies (PA) and the fractal dimension (FD) of the lesion for each of sample in
the validation and test sets. The distributions are shown in Figure 4. As observed both the test
and validation distributions seem very different. To formally corroborate this, we tested the null
hypothesis that both sets come from the same distribution by an unpaired Mann—Whitney U test
over the PA and FD values, obtaining, after correcting for multiple test, p-values of 0.00019 and and
0.000016. This indicates that it is very likely that the validation and test sets are indeed coming from
different distributions. In Figure 3, we observe some images where all the models fail to predict
accurately the lesion due to problems with the complexity of the shape or the abnormal color with
respect to surrounding skin.
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Figure 3: Example of discrepancy in the testing set of images caused by the significantly higher
lesion border complexity (top row) or the colored skin being mostly not melanoma tissue (bottom
row). Here (a) and (d) are the input, (b) and (e) are the ground truth, and (c) and (f) are the predicted
segmentation.
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Figure 4: Distributions of PA and FD of validation and test set samples
8 Conclusion/Future Work

Training performance for both dense U-net architectures was better than both the ordinary U-net
and previous winner’s U-net, with higher training and comparable validation and test dice scores.
The marked drop between validation dice and test dice in all trials and our statistical analysis shows
that this particular ISIC challenge dataset has validation and test data that comes from different
distributions. Both dense models had fewer parameters than the ordinary U-net and previous winner’s
U-net, perhaps making them more appropriate choices in a clinical setting where model storage space
may be limited.

The segmentation problem posed in the ISIC Challenge may in fact be adequately solved using
an ordinary U-net, as the differences in the underlying distributions of the provided validation
and test datasets appears to cap any performance gains made in the training and validation dice
scores. However, more complex problems might require U-net architectures with greater complexity
and depth that can achieve better performance in training. In the case of image translation or
reconstruction problems (i.e. reconstructing high resolution MRI images from undersampled K-space
data), employing more complex U-net architectures is often necessary to achieve a satisfactory
training and validation loss, and using a dense U-net for those purposes may provide substantial
performance gains.
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