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Abstract

The segmentation and quantification of single cells in
blood and tissue samples are critical to the early diagno-
sis of cancers and leukemia. To assist doctors in fast and
accurate diagnosis of such diseases, an accurate segmenta-
tion algorithm that could separate densely touching cells is
needed. In this work, we proposed a highly efficient and ef-
fective neural network model that has accurate predictions
on both cell segmentation and cell count. Specifically, to
capture each single cell in cell clusters, we integrated Re-
gion Proposal Networks (RPN) to detect cells with bound-
ing boxes. To predict the cell segmentation, we integrate
Instance-U-Net with pre-computed weight matrices. To fur-
ther improve the boundary predictions of densely touching
cells, we integrate Watershed algorithm with cell centroids
(predicted by RPN) and cell segmentations (predicted by U-
Net) as inputs. Extensive quantitative and qualitative evalu-
ations illustrated that our proposed model can produce seg-
mentation masks with more accurate single-cell boundaries
than state-of-the-art segmentation models.

1. Introduction

The rapid development of microscopic imaging in mod-
ern clinic applications enables the fast and accurate diag-
nosis of diseases such as leukemia and cancer. Segmenting
single cells from blood/tissue sample is critical to identify
diseased cells to achieve early diagnosis. On the other side,
the behaviors of single cells have brought more attention to
biological researchers. For example, the lineage tracking of
single embryo cells is vital to understand the mechanisms
in early stage embryo developments; the shape analysis of
mammalian cells during Epithelial-Mesenchymal transition
is key to dissect the process of how normal cells become
cancer cells.

Till now, identifying cells in images (cell segmentation)
has been challenging due to the high density and imbal-
anced illumination of the sample. Recently, convolutional
neural networks (CNNs) have became the instrumental tool
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for computer vision tasks [4, 11, 12]. Besides the improve-
ment of computing power, the driven force is actually the
implementation of new deep-learning models such as Fully
Convolutional Network (FCN) [7]. However, segmenting
biomedical samples is challenging, as the amount of data
is very limited. At the meantime, some regions of the im-
ages are densely compacted with touching cells that are dif-
ficult to separate. To address these issues, here we propose
a new model, which integrates U-Net and Region Proposal
Network to accurately predict boundaries for single cells.
The input to our network is an 40X fluorescent gray-scale
cell nucleus image of size 448X448, we then use RPN to
predict the bounding boxes and centroids for each cell nu-
cleus. Segmentation predictions were generated by U-Net
with weight matrices. Then we integrate Watershed algo-
rithm to further separate touching cells where the U-Net
fails to separate. The output of our network is a binary
mask of the same size as the input, with the regions pre-
dicted to be cell necleus as 1, and background as 0. Our
method avoids the memory and segmentation limitations on
the state-of-the-art semantic segmentation models, with less
computational time and competitive accuracy.

2. Related Work
2.1. Fully Convolutional Network

The potential of using CNNs for semantic segmentation
has first been shown by applying Fully Convolution Net-
works (FCN) to perform end-to-end, pixel-to-pixel segmen-
tation [7]. This work sets the base line models and metrics
for FCN-based segmentation approach. However, FCNs are
initially designed for multi-class segmentation, and the net-
works actually focus on both the classification and segmen-
tation. Moreover, the original FCN lacks the upsampling
operators, therefore the output of FCN is less accurate com-
pared with other state-of-the-art models.

2.2. U-Net

Due to the flexibility of computation powers, more pow-
erful semantic segmentation systems have been developed
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Figure 1: Network structure. The feature extraction network(which is also the down-sampling branch of Instance-U-Net)
is composed of convolution layers and down-sample layers. The extracted feature map of shape (28,28,512) is passed
to two separate modules: 1.Region Proposal Network (RPN) and 2.Up-sampling branch of Instance-U-Net. RPN predicts
H W x k anchors with the 4 coordinates (z1, 22, y1, y2) and 2 object scores ( foreground, background) and generates the
proposed regions after Non-max suppression (NMS). Up-sampling branch predicts segmentation masks. The RPN predicted
cell centroids and Instance-U-Net predicted masks are then passed into the Watershed Layer to generate the final predicted

masks. Different arrows denote different operations

based on baseline models. Among all of them, U-Net [9]
is a powerful and elegant model as it yields accurate results
with very few training samples (30 images). The incorpo-
ration of up-sampling operations significantly increases the
resolution of final outputs. Another challenges in cell seg-
mentation is to separate touching objects (cells). U-Net at-
tempts to address that by introducing weight matrix to force
the network to learn more on the touching pixels. How-
ever, the U-Net still often fails to segment densely touch-
ing cells as the cell boundaries are difficult to estimate in
dense regions where cells have deformations, and the hy-
perparameters needed to compute the weight matrices may
introduce segmentation errors. Most importantly, U-Net is
purely the segmentation-based algorithm, it still treats each
pixels nearly equally without seeing cells as objects.

2.3. Faster-R-CNN

To our knowledge, Faster-R-CNN and related models
still obtain the highest accuracy in object detection. Com-
pared with other object detection algorithms, the main con-
tribution is the design of Region Proposal Networks (RPN).
Regions of interests are proposed by placing translation-
invariant anchors. Than each anchor is evaluated by RPN,
which further predicts the probabilities of anchors being ob-
jects, and 4 coordination offsets. Then the model integrates
Fast R-CNN [5], which uses RolPool to extract features
from bounding boxes. The features are than processed to
further predict class probabilities and finer bounding boxes

offsets. Since cell segmentation tasks contain only one ob-
ject class, RPN is sufficient to evaluate the bounding boxes
and object probabilities.

2.4. Mask-R-CNN

The emergence of idea instance segmentation addresses
the issue of semantic segmentation: it first detects all the
target instances (in this case, the touching cells), and per-
forms segmentation within each instance. Recently, Mask-
R-CNN implemented instance segmentation by fusing Re-
gion Proposal Networks (RPN) [6] with FCN. By applying
FCN to segment the regions of interest proposed by RPN,
Mask-R-CNN was able to perform instance segmentation
with good results. Our model takes the advantage of in-
stance segmentation by incorporating RPN object loss and
bounding boxes regression loss to help the network perform
object-based segmentation.

2.5. Watershed

Watershed is a classical unsupervised segmentation al-
gorithm. The name Watershed is defined by the geologi-
cal termWatershed, which takes a drop of water (marker)
as the topographic peak. Together with the computed dis-
tance map, the Watershed algorithm simulates the process
of flooding from the peak towards the steepest gradient de-
scent [2] . In our model, we inserted a Watershed layer
which takes the Instance-U-Net predicted binary masks and
RPN-computed cell centroids to further compute Watershed



lines between touching cells.

3. Datasets and Features

The dataset is collected using ZEISS LSM 700 confocal
microscope with 40X objective on MCF10A human breast
cancer cell line. The cell nucleus was stained by DAPI and
illuminated by laser with wavelength 405nm. The training
set consists of 484 images with the corresponding ground-
truth binary labels, and the validation and test sets contain 8
images with ground-truth labels each. The size of each im-
age is 448X448, and each image contains about 100 cells.
The ground truth labels are computed using thresholding
and other segmentation methods; segmentation errors are
manually corrected image-by-image. The ground truth co-
ordinates for bounding boxes are calculated based on the
ground truth labels. We apply data augmentation techniques
to teach the network the desired invariance and robustness
properties. Thus, in this training, we adopt random mir-
rors, scaling between 0.8 and 1.2, and rotation over 360 de-
grees for all training data to alleviate the overfitting prob-
lem. The training images are normalized by subtracting the
mean value and divided by the standard deviation.

4. Methods

4.1. Feature extraction network and region pro-
posal network

The original faster R-CNN paper [8] applied transfer
learning and started from VGG-16 network. Since our task
is detecting touching cells in the image, which is differ-
ent than the aim of VGG models, we propose end-to-end
training and build our own feature extractor: it starts from
a 448 X448 grayscale cell image. Except for the first step,
which increases the channel size from 1 to 64, all other steps
pass the input tensor with 3.X 3 convolution layer twice, fol-
lowed by a 3X 3 convolution layer which also doubles the
channel size. Then the tensor is max-pooled on both A and
W with stride 2.

Following the same operation sequences, a feature map
of shape 28 X28 X512 is fed into RPN, where it applies 2
1X1 convolution layers with channel size 2k and 4k sep-
arately. Region proposals were generated by placing k an-
chors on every pixel of the feature map. In our practice
kE =9 (3 scales(0.5,1,2) times 3 aspect ratios(0.5, 1, 2))
could give optimal cell detection results. Then the bounding
box coordinates (x1, y1, z2, y2) of shape (H «W xk, 4) and
corresponding class scores (Popject, Pron—object) of shape
(H W xk, 2) are compiled into final bounding box proposal
layer after the Non-max Suppression.

The Loss function for RPN is denoted as:

L(platz) = W Lcls(pi7pi)+N Di Lreg(tia ti)
cls i reg P

(D
Briefly, 7 is the index of an anchor and p; is the predicted
probability of anchor 7 being an object. The ground-truth
label p; is 1 if the anchor is positive, and 0 if negative. t; is
a vector that represents the 4 parameterized coordinates of
the predicted bounding box, and ¢; is the ground-truth box
associated with a positive anchor. The classification loss
L. is log loss over two classes(object vs. non-object). For
the regression loss, we use Lyeq(t;,t;) = R(t;t;) where R
is smooth L1 function.

4.2. Segmentation by Instance-U-Net

Since RPN was originally designed to detect different
objects in complex real-life environments, where each de-
tected objects may touch each other. We reasoned that
the accurate performance of RPN in detecting touching ob-
jects could be used to improve the cell segmentation perfor-
mance. We bring the objectiveness insights into the origi-
nal U-Net structure to build a so-called Instance-U-Net. To
build such Network, we merged the feature-extraction net-
work with the downsampling branch of U-Net. In this way,
the U-Net downsampling branch will learn to extract op-
timal features that recognize each cell as object which is
guided by L¢;s and L.

Besides being used by the RPN as mentioned above, the
same feature map of shape (28,28,512) is shared with the
Instance-U-Net, which contains another 4 conv-upsampling
layers. The feature maps in the down-sampling path are
concatenated with the corresponding up-sampling feature
maps to preserve feature details. The final output tensor of
Instance-U-Net is 2 feature map of the same shape as the
input image, denoting the softmax scores of single pixels
being background or foreground. Each pixel is classified
based on the softmax score to produce the final mask pre-
diction.

Two different segmentation loss formulas are imple-
mented. The binary cross-entropy (BCE) loss function for
segmentation is denoted as:

> w(z)log(pya) (@) )

Where w(x) is the weight map, log(p;(,)()) is the pixel-
wise cross-entropy sum over all pixels. The weight map
w(z) is computed for each ground truth segmentation mask
to help the network learn the small separation borders be-
tween touching cells.

(dl(m);;;i?(@f) 3)

Where w, is the weight map to balance the class frequen-
cies, d1(z) and d2(x) denotes the distance to the border

w(z) = we(x) + woexp(—



of the nearest cell second nearest cell. In practice we set
wo = 10 and o = 5.

Since BCE is only a proxy indicator of the segmentation
performance, whereas Dice coefficient is a more direct eval-
uation on the performance, we sought to test the Dice loss
to further improve the segmentation results. The soft Dice
loss is denoted as:

_ 9 > i i(@)yi(@)
2ipi (@) + 3 y7(2) +e
Where p;(z) and y;(z) are the binary labels from predic-

tions and ground truth labels. e is a small factor to prevent
division by zero, in practice we set € = 1076
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4.3. Separating densely touching regions by
Marker-based Watershed

Watershed algorithm was specifically designed to eval-
uate the boundaries of touching objects. Therefore we
designed a built-in Tensorflow watershed layer to further
improve the separation of touching cells by incorporating
scikit-image’s implementation[10]. As shown in Fig.2, the
RPN predicted cell centroids and the Instance-U-Net com-
puted masks are fed into Watershed layer predict the cell
boundaries.

5. Experiments and Discussion
5.1. Implementation details

The models were developed using Tensorflow[1]. We
adapted and incorporated [3] and luminoth faster-RCNN
implementations in developing the Region Proposal Net-
work. Experiments were performed on Tesla K80 with 12
GB Memory. Learning rate we chose was 10~# to balance
the converging speed and performance. We use Adam op-
timizer, since it provides the best converging speed and ac-
curacy. For RPN, we use NMS threshold = 0.3 to prevent
multiple bounding boxes on the same cell.

To evaluate the performance of different algorithms, we
report pixel error, mean IU, RMSE, and instance error as
metrics. Instance error is denoted as Z—Z{‘}’ﬁl, 3 Tervor
is the number of instances that are not correctly separated,
> I,y is the total number of touching instances.

5.2. Qualitative evaluation

Representative results are shown in Fig.3 and Fig4.
From the results, we can see that the baseline U-Net model
(U-Net with weighted binary cross entropy loss) has de-
cent performance on regions where cells are touching but
the total number of cells in cell clusters are small. How-
ever, U-Net still fails in many instances where regions are
too dense and cell deformation happens. Instance-U-Net
resolves most of the issue and consistently achieve better

lMarker-Watershed

Figure 2: Improving segmentation results by implementing
Watershed algorithm. Bounding boxes and segmentation
masks are computed by RPN and Instance-U-Net. Then the
estimated centroid of each cell is computed from the 4 co-
ordinates as (21522, #1192) The the Watershed line is es-
timated based on the binary mask and centroids.

results: most of the cells are separated and the boundaries
are smoother. Since Instance-U-Net also learns to detect
cells vs. non-cells dirt in the images, Instance-U-Net out-
performs U-Net as it will not segment dirt/non-cell object
as cells. Although has better shape estimations, the using
of Dice loss fails to produce a comparable performance as
weighted BCE, and it sometimes introduce artifacts at cell
edges. The problem might be due to the unstable gradient
flows introduced by Dice loss. Using the combination(sum)
of BCE and Dice loss leads to the visually best results, as
the evaluated cell boundaries are more accurate and cleaner.

Watershed algorithm further improves the Instance-U-
Net in segmenting touching cell regions, where human
could visually identify the number of cells in the region, but
hard to evaluate the cell boundaries. Watershed algorithm
helps the Instance-U-Net to further evaluate the boundaries
of those regions. However, Watershed layer also introduces
several errors in final segmentation (as shown in Fig 3 bot-
tom, I-U-Net-Watershed-BCE results, red dash circle): if a
single cell nucleus has been recognized as two objects by
RPN, then 2 markers will be placed in the same cell, and
force Watershed algorithm to generate a line in the middle
of the cell.

5.3. Quantitative Evaluation

The comparison of metrics for different algorithms has
been reported in Table.1. Instance-U-Net with BCE/Dice
joint loss outperforms other models in all metrics except
Instance error. The smallest instance error is achieved on
the same model with the Watershed layer, which matches
with our expectation: Watershed layer is designed to han-
dle instances that are hard to segment for Instance-U-Net
with BCE/Dice joint loss. The implementation of Water-
shed further decreases 2/3 of the instance error. Only a
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Figure 3: Sample results. For inference time, test images(top left without bounding boxes) are fed into different models
and generate: 1. the object predictions(top left bounding boxes) with confidence scores and 2. the predicted masks by
different models. Among all them, Instance-U-Net with joint BCE/Dice loss obtains the visually best results, it also has the
best Watershed separation boundaries without introducing too many errors. Trained with BCE or Dice loss separately only

achieved good shape or touching edge segmentations.

Table 1: Quantitative results associated with different ap-
proaches

Pix. Err. Mean IU RMSE Ins. Err.

IU-Dice 0.0301 0.9359 0.1735 0.3113
U-BCE 0.0292 0.9377 0.1710 0.1698
IU-BCE 0.0292 0.9378 0.1708 0.1132
IUW-BCE  0.0299 0.9356 0.1728 0.0660
IU-BCE/Dice  0.0288 0.9385 0.1697 0.1557

IUW-BCE/Dice 0.0297 0.9372 0.1724 0.0566

very small amount of touching cells remain connected af-
ter the Watershed transformation. The instance-U-Net (Ta-
ble.1, row3) consistently outperform the baseline U-Net
(Table.1, row2) in every metrics, which justifies the ne-
cessity of adding bounding box losses to help the network
learn instances/objects. Fig.5 also shown that Instance-U-
Net (blue line) converges much faster in mean IU than U-
Net (red line). As previously mentioned and shown in Fig.3,
directly training on Dice loss (Table.1, rowl) fails to sep-
arate nearly 1/3 of all touching instances. The joint loss
brings the smooth gradient flow from BCE and direct met-
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Figure 4: Zoomed-in analysis on the effect of instance train-
ing and Watershed algorithm in dense region. Fig 4 A-D:
Ground truth, prediction from U-Net w/ BCE loss, predic-
tion from Instance-U-Net w/ BCE loss and prediction from
Instance-U-Net w/ BCE/Dice joint loss. Instance-U-Net
outperforms U-Net by recognizing the cell shapes better (B
and C), and joint training of BCE/Dice loss further improves
the prediction. Fig 4 E,F: The prediction before Watershed
layer(E) and after Watershed layer(F), blue dash circles in-
dicates the boundaries estimated by Watershed.

rics training from Dice to achieve better performance. We
did not observe any sign of over-fitting, as the training, val-
idation and test performances are very similar.
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Figure 5: The effect of instance training on Mean I.U. on
validation set. Compared with U-Net (red line), Instance-
U-Net (blue line) achieved faster Mean I.U. convergence.

6. Conclusion and future work

The Instance-U-Net with joint loss achieves promising
segmentation results in microscope images with densely
touching cells. The implementation of Watershed at the
end further improves the performance of separating touch-
ing cells by 3 folds. Our model only needs small training
time (7 hours) with fast inference time (5fps) and could be
easily applied to other datasets and tasks. Future work will
be focused on improving single cell detection by engineer-
ing Region Proposal Network to generate less error intro-
duced by Watershed.
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