

Empty Vehicle Weight Prediction for EVTOL Aircraft

Jordan Smart for CS230 – Deep Learning, Fall 2018 jtsmart@stanford.edu

Problem & Prediction

- Analytical methods exist for predicting aircraft weight based on size of various components
- These methods require a full-featured aircraft model within a conceptual design suite
- By training a neural network we can make these predictions without the overhead of the conceptual design suite

Data Format

•1E6 data points were generated via uniform random sampling of the design space for aircraft with estimated MTOW from 2E3 to 2E4 kg:

Models - FCNN

- FCNN as Baseline:
- 32-128 Hidden Units
- 3-9 Layers
- Softmax or ReLU Output Layer
- Adam Optimizer
- α: 1E-4 to 1E-1
- Batch Size from 32 to 1024
- Training Epochs from 10 to 10000

Categorical vs. Regressor

 Problem can be posed as either regression using 1-D output w/ MSE Loss or 100-D output w/ CCE Loss:

$$L_{MSE} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

$$L_{CCE} = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} -\left(y_{ij} \log \hat{y}_{ij} + (1 - y_{ij}) \log(1 - \hat{y}_{ij})\right)$$

Results & Discussion

	Training (95%)	Test (5%)
Categorical	3.6%	1.9%
Regressor	2.7E7	4.5E7

- Overall performance was poor, Regressor errors on the order of 5000 kg, Categorical accuracy only marginally better than random guessing
- Models typically reached this performance in <500 epochs, insensitive to longer training
- Improved with size of dataset, not with size of network (tested with subsets of 1E3 to 1E5 points)

Future Work

- Generate larger dataset, exclude outliers
- Consider wider range of architectures (e.g. HRNN)
- Implement simulated annealing optimizer