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/ Discussion / Future Work .
The purpose o tis project was o deterine whether it woud be effective 10 caption images using image captoning neural networks .
pass those captions through anothar neural net o predict the emotons in an image. n order fo determine ths, we created tree When we decided o use a residual convoluioral newal network 24y ke e oz
diforent models. The frst was a fosidual CNN with t 10 precict which emotion was expressed in the image and the for his projoct we had assumed tha a resnet woud b the best  AS 91 the featuo embodding ard mut-ciass cassiicaton mode,same IS
cond used image embedding matrices from image captioning repositories. We found that we were not able 1o get the residual CNN tion for motions in images due to the depth- ‘possibla ways o improve, patioamance Inchxle i 2

‘model to supass those made by the researchers who atiempted this problem before us, 50 we moved on 1o other approact

We also tried 1o use fractal neural networks, which use fractal network layers in order 10 process an image. Fractal nets have a ot of

‘same benefts of resnets, however in our case we found fractal networks 1o be 100 deep o train. We found that raining was
extremely siow, and in the few tests we were able 1o run, we fan info an exploding gradient problem. AS a fesut, we stopped
pursuing this path

feature embedding followed by a neural net method was ot as effective as we had hoped it o be. It seems that the aigorithm is.
doing a e better than *guessing” what the emoional response is. This may be due fo the fact that an emotional resporse to an
image is very subjective and finding the key features that cause an image to be labeled "angry’ o “content” is dificult. n addiion,
the ptions for images o to classify Asa
resut, itis likel that we lost relevant information and/or gained umnecessary information in the feature embedding. We found that the
algorithm works best on emotional responses of amusement, contertment, and disgust. Furthermore, we see misclassification
between similar categories such as fear and anger.
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