Achieving Comparable Performance With Less Parameters in Segmentation of Melanoma Using Dense U-Nets

Charles Huang Gustavo Chau Department of Bioengineering, Stanford University

Introduction

- Skin cancer is one of the most common types of cancer. Melanoma presents a high mortality rate.
- Growing interest in developing automatic methods for the diagnosis of Melanoma. Usual first step: segmentation.
- This project centers on the segmentation of melanoma lesions from dermatoscopic images of the ISIC challenge [1].

Dataset

- Task 1 of ISIC challenge: dermatoscopic image and the corresponding binary mask groundtruth [1].
- 2000 training examples, 150 validation examples, and 600 test examples.
- Images resized to 192 x 256 pixels and normalized by subtracting the mean and dividing by its standard deviation.
- Data augmentation did not help performance.

Acknowledgements

The authors would like to acknowledge and thank Yuan Xie, Yannan Yu, Enhao Gong, and Greg Zaharchuk for their help and advice.

References

- [1] N. C. F. C. et al., "Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (ISIC)," CoRP, vol. abs/1710.05006, 2017. [Online]. Available: http://arxiv.org/abs/1710.05006
- [2] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks segmentation," CoRR, vol. abs/1505.04597, 2015. [Online]. Available: http://arxiv.org/abs/1505.04597
- [3] Y. Yuan, M. Chao, and Y. Lo, "Automatic skin lesion segmentation with full olutional-deconvolutional networks," CoRR, vol. abs/1703.05165, 2017. [Online]. Available: $\mathsf{http:}//\mathsf{arxiv.org/abs}/1703.05165$
- [4] G. Huang, Z. Liu, and K. Q. Weinberger, "Densely connected convolutional networks," CoRR, vol. abs/1608.06993, 2016. [Online]. Available: http://arxiv.org/abs/1608.06993

Methods

Figure: Generic dense U-net

- · We tested 4 architectures for solving the current problem: U-net [2], the 2017 winner which was a encoderdecoder [3], and dense U-nets (based on [4]).
- Learning rate=0.0001, trained until convergence, minibatch size=16.

Results

Model	# param	Train Dice	Val Dice	Test Dice	Test(Post)
U-net(CE)	7.8M	0.85	0.90	0.77	0.80
U-net	7.8M	0.89	0.91	0.83	0.84
2017 winner	5.0M	0.85	0.92	0.81	0.83
small dense	0.7M	0.96	0.93	0.79	0.81
dense	2.7M	0.97	0.93	0.82	0.83

Figure: Example of Predicted images with the different methods.

Discussion

• Unpaired Mann-Whitney U test over percentage (PA) and the fractal dimension (FD) of validation and test obtained p-values \sim 0.0001. It is very likely that the validation and test sets are indeed coming from different distributions.

Figure: Example of discrepancy in the testing set of images caused by the significantly higher lesion border complexity or coloring of skin being mostly not melanoma tissue (bottom row).

Figure: Distributions of PA and FD of validation and test set samples

Conclusion

- Dense U-net obtained comparable validation and test dice scores. The marked drop between validation and test dice in all trials was probably due to different distributions.
- Reduced the amount of parameters to as small as 9% of the number of parameters in a regular U-net.