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Given an image of a person wearing a clothing
item automate determination of the item type
and category. Online shopping for fashion
items is a complex multi-step process. Part of
the problem lies in incorrect annotations
associated with a particular item like
mismatches in type of clothing and its
category.

We are using Deep Fashion dataset [1] which
has around 290,000 clothing images. Each
image is annotated with one of 46 categories,
like dress, T-shirt, coats, shorts, etc. Each
category is of one of the 3 types: upper body
clothing, lower body clothing and full body
clothing.

Total samples:
289222

Training samples:
209222

Test samples:
40000

Validation
samples: 40000
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Network Architecture

We trained Fashion data on mainly two types of networks:
1. VGG-16 baseline network

2. Resnet-50 network with optimizations
We experimented with hyperparameter search for Resnet-50, to
improve upon the loss and accuracy. Optimizations were done using
a) gradient clipping, b) early stopping, c¢) RMS-Prop, d) Adam
optimizer.

Visualization

Visualizing intermediate activations indicates how CNN layers
transform the input. Input image (a) is transformed initially linearly (b),
followed by #n convolution filters. Initial layer filters in (c,d) are doing
edge detection, separating object from background, segment
detections etc. Later layer filters in (e, f) are building more conceptual
than basic visual feature maps. Hence the sparsity of activations [4]
increases in later layers owing to absence of features detected by
complex feature filters.
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Visualization of Activations for VGG-16. a) Sample input image from DeepFashion, b) Activations with padding and image augmentation,
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¢) #1 maxpool activations, d) #3 ConvActivations, e) #5 Conv Activations, f) #5 MaxPool Activations

The next step in this project is to attempt category|
classification using Attention along with landmarks.
Attribute identification is also an extension as the attribute!
vectors are available in the dataset. For visualization, we
would attempt visualization of a) heatmaps of class
activations, b) convnet filters

The y-axis in the above diagram is log of the count.
Implying there is a huge discrepancy in the number of
images we have for each category. To prevent this
data imbalance we randomly chose ~6000 images of
each category for training. We also considered
creating a model only for upper body garments.
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The y-axis in the above diagram is log of the count.
Implying there is a huge discrepancy in the number of
images we have for each category. To prevent this
data imbalance we randomly chose ~6000 images of
each category for training. We also considered
creating a model only for upper body garments.
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Private video posted at: https://youtu.be/wfcadnAPUdO
Shared with Patrick Cho




