Introduction

Being able to accurately detect vehicles from
videos has many practical applications,
including autonomous vehicles

Current state of art methods for doing this
include YOLO, which is capable of real time
detections

Most object detectors are not optimized for
video detections and do not take into
account temporal information from the video
Techniques such as sequential non-
maximum suppresion aim to improve video
detections by using neighboring frames to
improve weak detections [1]

Dataset
We trained our model with the UA-DETRAC

dataset consisting of traffic videos and their
annotations

The dataset consists of 60 videos of urban
traffic with a total 140K frames, 8250
vehicles and 1.21 million labeled bounding
boxes [1]
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Fig 1. Image samples from different environments

The video data was preprocessed into 416x416
images before feeding into YOLO, along with
their list of annotated ground-truth object labels
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Methodology

For this task, we first trained different variations of
the YOLO object detection architectures [2] to
perform the object detections, including YOLOv2
and Tiny-YOLO. Below is a summary of the
YOLOV2 architecture. The architecture for Tiny-
YOLO is similar, but only with 8 convolutional
layers in the bulk of the network.

Fig 2. YOLOV2 network architecture

In addition, we use sequential NMS instead of
NMS as a postprocessing technique
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Fig. 3. The Seq-NMS analogue of object score[3].

Sequence NMS iterates three steps:

1. Find the max sequence subject to the
constraint that adjacent frames must be
similar (loU > 0.5)

2. Weak detections in the sequence are then
rescored

3. Frames close to the max sequence are
then suppressed
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Fig. 4. Sequential NMS algorithm overview [3].
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Results Conclusions

» Sequential NMS does not appear to
improve the performance of YOLO

* More testing/debugging is needed to

confirm this conclusion

Detection accuracy is higher during the day

time compared to night time

» Detection is more accurate for horizontal
side-view vehicles than vertically front/back
views

For training and testing, we split our data into
a 90/10 train/test ratio. Our test data contains
6 videos from a variety of environments
(day/night, rainy/clear) to test the performance
of the algorithm under different conditions. °

Training/Validation Loss

Future Works

» Implement real-time sequential NMS
if sequential NMS proves to be fruitful

 Investigate and implement techniques that
have been show to work better at extracting
temporal information for video detection,
such as tubelets

« Adapt the techniques mentioned above for
real-time video detections

Fig. 4. Ground-truth test labels Fig. 5. Training loss curves for YOLOv2

To compare performance between models,
we use the average precision (AP), which is
the area under the precision/recall curve.
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Fig. 5. Precision/recall curves for YOLOV2 (car, bus, van, others)

Model _ ___________[Hyperparameters ______________| AP: Car | AP: Bus | AP: Van |AP: Otherl _mAP_]

Tiny YOLO $=13,B=7,Ir= 1e-5, optim = Adam 0.66 0.47 0.44 0.01 0.62
YOLOV2 §=13,B=7,Ir=1e-5to 1e-6, optim = Adam  0.81 0.77 0.51 0.05 0.77
Preliminary results indicate that Sequential References

NMS postprocessing does worse than normal
NMS on a toy subset. Further testing ,
debugging, and tuning is needed to confirm
these results.
Video __[Time _|Vehicle Orient. | AP: Car | AP: Bus | AP: Van [AP: Otherl_mAP_|
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P: Car
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