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- Pre-processed data to discard any dead ETFs  that eliminates market data noise, improve performance significantly.
+ Wavelet Denoising « Prediction of S+ is performing significantly better than [1]. Additionally, Future Wor
* Multi-resolution discrete wavelet transform o we have been able to predict spread at 15-time steps ahead.
perform de-noising. « Profits made using deep learning based methods are significantly more * Add more information from other sources, such as current news, twitter
* Feature Extraction: than the traditional statistical techniques. feeds etc. via NLP to help improve long term predictive power of model.
« Extracted various technical indicators (TI) » Replace current statistical methods with deep learning methods for
such as ‘Momentum’, ‘Volatility' and ‘Trend’ ferences identifying co-integrated pairs.

indicators from raw time series data that can 17 \wei Bao. Jun Yue2. Yulei Rao. A deep learning fi K for fi (al ti : F ) )
be used as feature inputs for LSTM . [Js]ing st :ﬂtogﬁcgd;‘;'anfff;,ng se,fg’nf:{;'ﬁe,f;“rf work for financial tme series  R(QTURIV|o =M M[3] 8 https://youtu.be/KMWc5jAcnOA




