Playing Pokémon Showdown with Deep Reinforcement Learning

Kevin Chen (kvchen@stanford.edu), Elbert Lin (e1168@stanford.edu)

Overview

e Simultaneous zero-sum game in which players compete to defeat the
opposing team’s Pokémon
Reinforcement learning methods shown to be effective on various

games
Train agents to compete in Pokémon battles against an adversarial
opponent

et @Copy SimponExpont +Move @Ddete

Thundarbot

5 Grass koot o =
Uortsal st vidden power e | e e

e Tive cot Pom A 70

(Trunderbet -y

Left: In-game from Pokémon Showd. (Luo, 2018)
Right: Visual stats for a particular Pokémon. These statistics are used as input features to our
network.

Environment

e Created a proxy server that wraps the Pokémon Showdown internals.
Snapshots game state at each step to permit for deterministic rollouts
at any point in the game.

e Client is exposed as an OpenAl Gym environment to allow arbitrary
agents to play the game.

e Rewards: +1 if the game is won, -1 otherwise.

Feedback loop for agents in a gym environment. Agents take a step from some state and observe
some new state and corresponding reward. If an episode is completed, the environment resets
and a new game is started. The environment is closed and terminated at the end of an epoch.

e Three opponent agents:
o Random: Selects a choice at random out of the available choices.
o Default: Selects the first available choice. This will select a move
action the majority of the time.
o Minimax: Explores the game tree to a certain depth and selects
the most favorable action based on a heuristic (difference between
sums of fractional Pokémon healths)

Methods
Feature Extraction

Created a wrapper around PS server to enable information extraction
For each turn, obtained certain data about current game state
General battle features: terrain, weather, each team’s Pokémon
Pokémon features: HP, max HP, stats, boosts, type, status, gender,
level, moves

e Move features: PP, max PP, accuracy, base power, type, target

Proximal Policy Optimization

e New family of policy gradient methods, is simpler, more general, and
has better sample complexity

e Uses novel objective function to apply soft constraint as penalty (see

below, John Schulman et al., 2017)

Optimizes objective by minimizing cost while maintaining small

deviation from previous policy

e To simplify, uses clipping on probability ratio between old and new
policies

LEHP(9) = E; [min(r,(8)A,clip(r:(8),1 —€,1+£)A,)]

e 0 is the policy parameter

o £, denotes the empirical expectation over timesteps

® r; is the ratio of the probability under the new and old policies, respectively
o A, is the estimated advantage at time ¢

e ¢ is a hyperparameter, usually 0.1 or 0.2

Experiments

e Network architecture:

Output

Our RL agent used a deep NN. Of note is the move validation step, in which the logits of invalid
moves are set to negative infinity such that the final softmax probabilities of these invalid moves
is zeroed out.

e Not all moves are valid at each timestep, so filtering network outputs
was necessary.

250 epochs, 4000 steps per epoch

Trained RL agent against each opponent agent and recorded average
reward over each epoch

Results and Discussion

RL agent learned to beat both random and default baseline agents
Failed to perform well against minimax agent

" VJ‘“ ﬂ WNWWWWWW \I\ h

N . ik LM ‘f‘“
i : \ﬁf””w\u Mg

Left: Rewards after training against a random agent. The RL agent quickly learns how to win
almost 100% of the time.

Right: Rewards after training against a 1-ply minimax agent. The RL agent is unable to make
‘much progress in learning how to beat this agent.

Left: Moves chosen by our trained agent against a random opponent.
Right: Moves chosen by our trained agent against a minimax opponent.

Surprisingly, agent which does poorly against minimax performs well
against random and default.

Future Work

Optimize battle engine system to use immutable data structures,
making snapshotting faster and easier to reason about.

Train against minimax at a larger ply. Computational resources are
the limiting factor here.

Explore more complex network architectures

e Explore transfer learning - pretraining the network against an easier
opponent agent, then switching over to the minimax agent

Works Cited

httos://github cor

*Openi gym.” arXio preprint arXiv: 1606.01540 (2016).
fensorflow: a system for large-scale machine learning,” OSDI, Vol 16. 2016
Knowiedge."

Abads, Martin,
Siler, David, et l. "

