DOTA2 Game Prediction with Deep Neural Network

Luyao Hou, Yiqging Ding
Stanford University

BSTRAC

DOTA 2 is a popular multi-player online battle arena game. Players form two
five-man team and control different hero avatars trying to defeat adversary
team and destroy their fortress.

Complexity of the game implies that it is quite unfriendly to new players. On
the one hand, new players are unable to assess the game situation as seasoned
players. Professional players can predict game outcome event at the very
beginning of the game. On the other hand, new players cannot make a right
decision to facilitate the game progress. Among all the decisions to be made,
the most important one in DOTA 2 is item purchase options.

In this project, we use different deep neural network architectures to
investigate problems in DOTA 2 gameplaying. We start by building a winning
rate prediction system using current game states. We then utilize this prediction
system to explore different item purchase options to find out which items work
the best.

INTRODUCTION

In DOTA 2, Each player controls a single hero. Heroes can gain gold by killing
creeps (machine generated soldiers), enemy buildings and enemy heroes.
When a hero dies, he/she loses gold and will respawn after certain time. Gold
can be used to purchase items or buyback (immediately resurrection).

DOTA 2 currently (version 7.20) has 116 heroes. Each hero has various
different abilities ranging from dealing damage to adversaries to healing allies.
Meanwhile, heroes gain experience (“xp”) similarly as gaining gold. Experience
can be used to upgrade heroes which allow them to have better abilities and
other properties, such as health gain, moving speed, etc.

Meanwhile, DOTA 2 has a huge map where many game factors are included
such as neutral creeps and runes (can be picked up by heroes to give them extra
time limited capabilities).

To build the winning rate prediction system, it is necessary for us to
modelling the known game state (to one team) as fully as possible. Therefore,
we used all the above mentioned factors in our state representation to build
the neural network.

OpenDota is an open-source website that provides data of game matches
from both public and professional games. Because of the discrepancy of
gameplaying that often happen between teams in public matches, we decided
to use only the professional matches where most players are on a similar level.
In total, we pulled 13640 professional matches from OpenDota’s API. We then
divided these matches into sets of [11640/1000/1000] for [train, dey, test]
purposes.

FEATURES & MODELS

We define our state vector and output as follows

x = [Current game state information, such as gold, kill logs, etc]
y = Winning rate

Current game state information includes all the information known to the
player on allied team and the state definition changes a little when training
using different networks. Some features have variable length in raw data, for
instance, one of the heroes may get 10 kills in the entire game while another
might only have 2. We engineered these features into constant length vectors.
For instance, the kill log is turned into the number of kill plus the time for latest
kill.

Architecturel: Plain Neural Network

It is apparent that results of plain neural network setting vary significantly
with timestamp of input state vector. Prediction accuracy will be much higher at
the end of the game than at the very beginning. Therefore, we tested using
both states at a fixed time versus states at a random time slice.

Layer # 1 2 3 4 5 Output
:idde" Uit 3000 200 500 100 20 i
Activation RELU Sigmoid
Initialization Xavier initialization for W and zero initialization for b

Table1: Plain Neural Network

Architecture2: RNN

With RNN, we input the state vector at every minute of a game to predict
the winning rate at each minute.

We fixed the length of the sequence to 50 as to most of the game duration
and tested both GRU and LSTM.

;S\gmmd\ sigmoid [sigmoid]
Feature
e {En:nder }— st ™

Featureat 11 Featureat T2 Featue atTas Feature at 749 Feature at 50

{ 1sTm

Figurel: Recurrent Neural Network with LSTM Activation

RESULTS

Plain Neural Network:

15 minute state + random time slice
i s sl Accuracy vs epoch

fvw A .
o V os = /W

* LSTM Accuracy — Epoch and Timestep

Accuracy at 20th minute vs epoch Accuracy vs RNN Timestep

* GRU Accuracy — Epoch and Timestep

Accuracy 3120t miute v Epoch Accuracyvs Timestep

Analysis:

= There is room for improvement in plain networks as there is high variation in
the random time slice case.

* GRU in general has lower accuracy than LSTM. This is expected as LSTM
maintains more state.

+ Both training and test accuracies are relatively low at early stage of the
game, probably due to limited amount of information and possible variations
later in the game.

FUTURE WORK

« Try to reduce the variance for plain networks so that test accuracy could
approach 95 to 100 percent.

Try RNNs with more than 1 layers to boost accuracy, especially for early
stage predictions.

Utilize the winning rate prediction system to recommend items to
purchase at different times in game.



