Hardware Acceleration of Lattice Networks

Matthew Feldman, Tushar Swamy

Introduction

- Problem: Detecting malicious packets in high speed datacenter networks is nearly impossible. We propose to solve this with hardware acceleration.
- Lattices are a new low latency building block for neural networks. They use interpolated, n-dimensional look-up tables to transform data.
- FPGAs are reprogrammable digital circuit devices that have recently grown in popularity due to their low power and ability to parallelize computation.
- Our work: A side by side comparison of a lattice network and DNN running on an FPGA and CPU.

Dataset and Features

• 41 features per row ranging from header information to flow level information in the form of strings, ints, and floats. Each row corresponds to a packet.

Theory

Models

Model	Train Accuracy	Test Accuracy	Recall	False Negatives
DNN (10,1)	0.9999	0.9990	0.9999	4202
DNN (96,1)	0.9999	0.9990	0.9999	2844
DNN (28,28,28,1)	0.9999	0.9991	0.9998	3266
DNN (10 Layer)*	0.9999	0.9937	0.9999	3041
Simplex (16)	0.9988	0.7685	0.9999	253
Simplex (32)	0.9970	0.7699	0.9935	6090
Hypercube (16)	0.9998	0.7687	0.9996	377
Hypercube (32)	0.9998	0.7686	0.9990	879
*(128,128,64,64,64,64,64,64,32,32,1)				

Model to Hardware Generation

Evaluation

Discussion

- Tradeoff: Network admins need to choose their models based on the speed of the datacenter as well as tolerance of malicious packets. Neither DNNs nor lattices are clear winners.
- FPGAs can accelerate DNNs up to 46x and lattices up to 5.5Mx
- Lattices are well suited to hardware because of their reliance on lookup tables and reduction trees.
- Overfitting is still an issue for lattices even with torsion. There is not much literature on dealing with bias/variance for lattices.
- Dataset is not well rounded which may have contributed to DNN's success. We need more real world tests

Future Work

- · Explore combinations of DNN units and lattices
- Experiment with lattice structures like embedded tiny lattices
- Investigate the effect of reduced precision on lattices

References

- Gupta, Maya, et al. "Monotonic calibrated interpolated look-up tables." The Journal of
- Machine Learning Research 17.1 (2016): 3790-3836.

 Mane, Vrushali D., and S. N. Pawar. "Anomaly based ids using backpropagation neural network." International Journal of Computer Applications 136.10 (2016): 29-34.
- Koeplinger, David, et al. "Spatial: a language and compiler for application accelerators." Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 2018. https://spatial.stanford.edu
- KDD Dataset: https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data