Deep Reinforcement Learning for Classic Control Tasks

CS 230 (Deep Learning), Stanford University

Andrew Zhang (andrewdu)

* Deep reinforcement learning (RL) was been shown to be
effective on well-defined environments such as standard Atari
games [1].

* This study aims to present results on more abstract and robotic
environments such as Acrobot-v1l and CartPole-v0 from
OpenAl Gym using deep RL implementations of Monte-Catlo
vanilla policy gradients (VPG) and proximal policy optimization
(PPO).

* Over 1000 episode rollouts across multiple runs, VPG and PPO
exhibited optimal results on both environments. However, while
VPG and PPO performed roughly equivalently on Acrobot-v1,
PPO out-performed VPG on CartPole-v0 by a decent margin in
both mean reward as well as learning speed every time.

* REINFORCE (Monte-Carlo VPG) uses the return of episode
rollouts to update the policy parameters by optimizing the
following objective [2]:

LP6(8) = E¢[log(ma(acls)) Ae]

* mp(agls;) represents the policy and A; denotes the advantage
at each timestep, which is calculated by subtracting a baseline
value function estimate (1-layer neural network) from the total
discounted sum of rewards [2].

* One major issue with VPG is that a large update can push the
agent into an unfavorable parameter region, upon which the
agent may never recover [1]. To address this issue, PPO instead
optimizes a clipped surrogate objective to ensure that the ratio
between the new and old policy stays within 1 — € and 1 + €:

LPPO(8) = E,[min(r,(8)A,, clip(:(8),1 — &, 1+ €)A)]

e For VPG, we used a 2-layer, 32 hidden units neural network that
outputted a softmax distribution with & = 0.01,y = 0.98.

¢ For PPO, both the new and old policies used the same
architecture as VPG with a clip ratio of 0.2, except the old policy
was not trainable and we updated the parameters from the new
to the old policy every two iterations.

» Acrobot-v1 (swing two link pendulum above base height):

* Observations — 6-tuple containing sin() and cos() of the
two rotational joint angles and the joint angular
velocities

e Actions — +1, 0 or -1 torque on the joint between the
two pendulum links

» CartPole-v0 (balance a pole on a cart):

average reward

average reward

100

150

200

250

200

260

260

280

¢ Observations — 4-tuple containing cart position,
velocity, angle, and tip velocity
* Actions — 0 or 1 denoting a push to the left or right

VPG Acrobot-vl VPG_CartPole-v0

average reward

[

20 800 1000 [200 %0 60 0 1000

%0 0
episodes episodes.

Figure 1: Vanilla policy gradients average return over

episodes

PPO_Acrobot-v1 PPO_CartPole-v0

)

20 00 1000] 200 %0 00 0 1000

%0 00
episodes episodes.

Figure 2: Proximal policy optimization average return
over episodes

References

As expected, over 1000 iterations, both VPG and PPO were able
to make benchmark reward average thresholds of -200 and 100
for Acrobot-v1 and CartPole-v0, respectively,.

On classic control tasks, there is not an extremely significant
difference between the results displayed by VPG and those of
PPO as both tend to perform well in the long run.

However, PPO generally learns at a smoother pace than VPG
due to the clipping function providing a surrogate “trust-region”
for the policy to update in.

Without a baseline to subtract from the discounted sum of
rewatds over all timesteps, VPG will display more variance due
to the pseudo-random nature of the policy [1].

Unfortunately, since both VPG and PPO are on-policy, they
suffer from sampling inefficiency as they forget data very fast in
order to avoid the introduction of a bias to the gradient
estimator.

Policy gradient methods such as VPG and PPO are more
advantageous in the continuous space because off-policy
methods such as Q-learning require a full scan of the action
space and thus are very computationally expensive.

Refine and modify VPG and PPO implementations to work for
continuous OpenAl Gym environments.

Implement trust-region policy optimization (TRPO) and twin
delayed deep deterministic policy gradients (TD3) and compare
results to ones from VPG and PPO.

Use Pickle and Python MPI packages to develop parallelized
implementations for faster episode rollouts and agent training.

[1] John Schulman, Filip Wolski, Prafulla Dhariwal,

Alec Radford, Oleg Klimov, “Proximal Policy
Optimization Algorithms,” arXir, 2017

[2] OpenAlL, “Spinning Up in Deep RL,” 2018,
https:/ /blog.openai.com/spinning-up-in-deep-tl/

