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Abstract

We devise deep learning models for detecting
14 thorax diseases from chest X-ray scans at
a level comparable to or exceeding recently
proposed models as well as professional ra-
diologists. In particular, we develop a 169-
layer neural network based on the popular
DenseNet convolutional architecture. We also
extract and analyze feature vectors from this
model and find that they exhibit significant
clustering properties; we use this insight to
develop other models that push classification
performance even further.

1. Introduction

Chest X-ray scans are the most frequent type of ra-
diology exam worldwide, and are commonly used to
diagnose pneumonia, lung cancer, and dozens of other
illnesses. Currently, the most effective method to diag-
nose pneumonia is chest X-rays (WHO, 2001). However,
proper diagnosis is challenging, as a single scan can
reveal multiple illnesses, and radiologists often disagree
in their diagnoses.

In this work, we build deep neural models for multi-
label classification of diseases revealed by chest X-rays.
Given an image, our classifier outputs label(s) indicat-
ing which of 14 disease classes the image falls into. The
output may be one, several, or none of the classes; the
multi-label character of the task gives it considerable
complexity.

1.1. Problem Formulation

Formally, the chest X-ray diagnosis problem is a multi-
label, multi-class classification task. The input is
a grayscale image X € {0,...,255}224%224 " and for
purposes of diagnosis, the output is a label vector
y € {0,1}'* where each coordinate y. = 1 if and only
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if the disease c is present in image X. However when
machine learning is applied to medical domains, it is
customary to use instead an output vector § € R4,
where . is the probability with which the model pre-
dicts disease c.

Additionally, we use our models to infer localized re-
gions of the images in which the diseases are present,
shedding light on which visual features are most perti-
nent for diagnostics.

2. Data

We use a dataset recently released by the National
Institutes of Health (NIH) containing 112,120 X-ray
images, each labeled with a subset of 14 potential
diseases. These images were taken from 30,805 unique
patients'. The diseases range from well-known ones
such as pneumonia, emphysema, and edema, to less
common pathologies such as pneumothorax.

Furthermore, though we do not use these features in
our work, each image comes with a small amount of
metadata, such as patient age and gender. A small
fraction of the images also come with bounding boxes
around diseased regions.

We preprocess the data by downsizing each image from
1024 x 1024 to 224 x 224. As in previous works on this
dataset, and because our neural network will be pre-
trained on ImageNet, we normalize each image with
respect to ImageNet. Finally during training, we also
randomly apply a horizontal flip to each image with
probably 1/2 to improve robustness.

3. Related Work

The NIH dataset has attracted strong attention in
the health and AI communities. Wang et al. (Wang
et al., 2017) were the first to perform classification
on this data, using pre-trained imaging models such
as AlexNet, GoogleNet, etc. They also generated
heatmaps to indicate diseased regions. Huang et al.
(Huang et al., 2017) trained a DenseNet model, which

'Data available at https://nihcc.app.box.com/v/
ChestXray-NIHCC.
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was subsequently improved by Yao et al. (Yao et al.,
2017). Finally, a very recent paper by Rajpurkar et
al. (Rajpurkar et al., 2017) focused on classification
of pneumonia, outperforming (Yao et al., 2017) and
(Wang et al., 2017) on several disease types.

As we shall demonstrate, our work also focuses on em-
bedding vectors extracted from deep neural networks.
Similar studies in this regard include (Mikolov et al.,
2013), which presents the Word2vec model for word rep-
resentations, as well as the “negative sampling” method
for training embeddings with useful geometric prop-
erties. Our work is also related to (Xie et al., 2016),
which proposes a Deep Embedded Clustering model
for clustering input points.

4. Methods

4.1. Transfer Learning with DenseNet

Our first effort is to develop a deep learning model
for disease classification using the transfer learning
paradigm. Starting with a standard DenseNet169
model (Huang et al., 2017) pre-trained on ImageNet,
we replace the final fully-connected layer with one that
has 14 sigmoid outputs. We then train this model
end-to-end on the chest X-ray data.

For a single training example, our neural network mod-
els optimize the sum (over the classes) of the weighted
binary cross-entropies, i.e.

14
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where c is the class index and §. = Pr(y. = 1|X,) is
the predicted probability of the example having label
e w = SN and wo = »EL_ are the fractions of
© e T [PI+IN] ¢ = |P[+[N]
negative and positive examples, respectively, in class c.

Of the models derived during 10 epochs of training, we
save the one with the highest average AUROC over all
the classes.

4.2. Feature Embeddings

In preparation for next steps in our project plan (see the
following section), we perform some feature analysis on
a trained CheXNet model, which is the name given to
the model devised in (Rajpurkar et al., 2017)2. In par-
ticular, we look at the input to the final fully-connected
layer of CheXNet, which is a 1024-dimensional vector

2The model we use for this purpose is a fully pre-trained
CheXNet model posted publicly to GitHub. We use this
implementation rather than our own, because our implemen-
tation has not been trained long enough to be competitive
with the best published models.

v, We call this the feature vector or embedding for a
given input (.

We build the set of all feature vectors v, ... v(™)
for a random subset of about 5% the dataset, then
normalize them using the mean and variance of that
set. We find that these vectors are fairly sparse: each
vector has only about 667 non-zero coordinates. We

then compute the following:

e The average pairwise L2 distance between vectors
in this set.

e For each class ¢ € {1,...,14} as well as the “no
disease” class, the average pairwise L2 distance
between vectors corresponding to examples from
class c.

The result of this computation is shown in Table 1.

L2 L2 square

Global average 35.29 1334.34
Atelectasis 33.31 1209.62
Cardiomegaly 34.15 1280.41
Effusion 35.22 1349.60
Infiltration 34.89 1300.12
Mass 38.65 1631.34
Nodule 37.76 1608.35
Pneumonia 35.99 1370.38
Pneumothorax 37.30 1522.33
Consolidation 33.35 1172.05
Edema 32.35 1096.89
Emphysema 38.67 1661.70
Fibrosis 33.78 1211.49
Hernia 29.28 903.76

No disease 33.19 1172.74

Table 1. Global and per-cluster average distances between
pairs of vectors. Emphasized classes are the ones that relies
outside of 95% confident region of Global distribution.

Although the intuition is complicated by the fact that
this is a multi-label problem, these distances demon-
strate that on average, feature vectors with the same
labels are closer in 1024-dimensional space. In fact,
under modest assumptions about the underlying data,
this difference is statistically significant.

To see this, suppose each feature vector v(®) is a 1024-
dimensional random variable in which each dimension
t is drawn i.i.d. from a normal distribution, i.e. U,El) ~
N(0,1). In this case, for a random pair of vectors

v@ 1) and each dimension ¢, we have

z, = vl — o ~ N(0,2)
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Figure 1. A projection of several disease class examples in
2D space, generated using the t-SNE dimension reduction
technique.

as well as
E[z7] = Var(z;) + E[z:]* = 2
from which we deduce that
Var(z?) = E[z}] —E[2?]> =4-3 -4 =8.

Since the data in each dimension is independent, apply-
ing the central limit theorem on the dimensions implies
that for the > 667 nonzero indices, we have

1 %7 z? — E[z7] N

d?(v®, v — 667 - 2
V667 - /8

— (WD, v9) ~ N(1334, (73.04)?)

N(0,1)

~ N(0,1)

where d?(v(®, 1)) is the squared L2 distance between
embeddings ¢ and j. Therefore we would expect
the global average squared L2 distance between vec-
tors to be 1334.34, with a 95% confidence region of
[1217.47,1451.20]. However, as our calculations in Ta-
ble 1 show, quite a few classes (those with names in
bold) have average distances outside the confidence
region, suggesting that the data does not share the
same distribution as that of the dataset overall. This
leads us to the intuition that feature vectors cluster by
class.

4.3. Embedding-Based Classification

As demonstrated above and in Table 1, the feature
vectors pulled from the DenseNet model form clusters,

one per class, such that on average, distances within
clusters are modestly smaller than distances over the
whole dataset.

To take advantage of this observation, we extract the
feature vectors from the DenseNet and use them as
inputs to other classifiers. To exploit the geometric
structure of the vectors, we use the k-nearest neighbors
algorithm, in which a prediction on input X is made
by taking a vote of the k training examples it is closest
to. We also use other classic machine learning methods
such as random forests, in which an ensemble of decision
trees vote/average their predictions.

5. Experiments and Results

For the DenseNet169 model described in the previous
section, we perform a thorough search over many hyper-
parameters; we settle on an Adam optimizer with stan-
dard parameters (81 = 0.9 and B2 = 0.999) (Kingma
& Ba, 2014), mini-batches of size 16, and a learning
rate that begins at 10~* and decays by a factor of 0.2
after each epoch in which the loss does not improve.
To address overfitting, we add dropout at a rate of 0.1;
we find that this works better than L2 regularization.
This model achieves an average AUROC score (over all
classes) of 0.842.

Next, we compute, for each input X, the feature
vector f(X®) € R'64 obtained by running the input
through all but the last layer of the DenseNet model.
We then take these to be the inputs to several classic
machine learning models:

e k-nearest neighbors: Since k-nearest neigh-
bors scales poorly for a large number of high-
dimensional examples, we subsample each class
so that we retain only a 1% fraction of the orig-
inal dataset, but each class is represented in the
same proportion as in the original dataset. Our
best choice of & = 20 nevertheless yields signifi-
cantly poorer results than the DenseNet itself, at
an average AUROC of 0.686.

e Random forest: This model is competitive with
the DenseNet. For a choice of 100 individual trees
in the forest, each with a maximum tree depth
of 5 (to curb overfitting), the result is an average
AUROC of 0.825.

Finally, we ensemble the DenseNet169 model together
with the embedding-based random forest model (that
is, at prediction time we take the average of their
individual predictions), which results in even better
scores for many classes.
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Pathology Rajpurkar et al. DenseNet169 Random Forest k-Nearest Neighbors DenseNet+RF
Atelectasis 0.8094 0.8280 0.8267 0.7252 0.8291
Cardiomegaly 0.9248 0.9147 0.8909 0.6945 0.9117
Effusion 0.8638 0.8888 0.8820 0.8047 0.8889
Infiltration 0.7345 0.7201 0.7117 0.6598 0.7220
Mass 0.8676 0.8524 0.8645 0.6366 0.8517
Nodule 0.7802 0.7849 0.7741 0.5978 0.7872
Pneumonia 0.7680 0.7644 0.7603 0.6062 0.7685
Pneumothorax 0.8887 0.8816 0.8974 0.7594 0.8795
Consolidation 0.7901 0.8092 0.8164 0.6997 0.8101
Edema 0.8878 0.8941 0.9071 0.7805 0.8914
Emphysema 0.9371 0.9222 0.8883 0.7125 0.9310
Fibrosis 0.8047 0.8397 0.8029 0.6391 0.8403
Pleural Thickening 0.8062 0.7918 0.8149 0.6752 0.7940
Hernia 0.9164 0.8903 0.8454 0.6122 0.8712

Table 2. AUROCS for models trained in a recent paper (Rajpurkar et al., 2017), as well as ours. In all but five diseases,
one of our models (either our DenseNet169 model, or our ensemble of the DenseNet169 with the embedding-based random
forest) outperforms the earlier work, in some cases by large margins.

More detailed metrics for our models, as measured on
the test set, are shown in Table 2.

6. Conclusion

In this work, we demonstrate improved deep learning
models for diagnosing a myriad of thoracic diseases
from chest X-ray scans. These diseases are often com-
mon and preventable, but have up to now required
professional radiologists to diagnose. Our results show
that these tasks can be at least partially performed
by machine learning methods, which could potentially
solve the problem of the global shortage of radiology
experts.

In addition to improving classification performance for
many disease classes, we also demonstrate that feature
embedding vectors intercepted from deep neural mod-
els exhibit interesting geometric properties—namely
clustering—and that this can be exploited for better
accuracy.

6.1. Future Work

We believe the research direction studied here only
scratches the surface of what is possible with embedding
vectors. We plan to continue work on this project in
the coming academic quarter, focusing on the following
improvement areas:

e Learning a better embedding: Currently we ex-
tract our feature vectors from a DenseNet model
trained with a final logistic classification layer. We

are now beginning to try a new approach, using
the negative sampling loss technique introduced
by (Mikolov et al., 2013) to train feature vectors
that have large separation between different classes.
The hope is that this will enable even stronger clus-
tering properties and thus better accuracy with
methods such as k-nearest neighbors. However,
currently the loss calculation is too slow; we are
exploring ways to speed it up.

We will attempt to use embeddings in a transfer
learning situation—in particular, to detect a new
disease for which we do not have enough data a
priori. We plan to first train a neural network on
13 disease classes, then ask it to classify a new
disease based on whether the embedding vector
of a given input is far from the clusters for the
pre-trained disease classes.

Localization: We plan to use the bounding boxes
provided in the dataset to generate visualizations
of where our neural networks believe the diseases
to exist in the patient’s body. This will help us
understand our models as well as possible ways to
improve them.

Data augmentation: Currently we simply resize
each X-ray image to 224 x 224. We can instead
augment the dataset by first resizing each raw
image to 256 x 256, then taking various crops
(either deterministically or randomly) to derive
several different images of size 224 x 224.

e Asa practical matter, we plan to use more powerful
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hardware. We have provisioned a machine with 8
times more GPUs, which will allow us to iterate
on our models much faster.

Code Repository

The code described herein is available at https://
github.com/jimmyjwu/chest_X-ray_diagnosis.

Contributions

Jimmy was responsible for training and tuning the
DenseNet169 model, preliminary analysis of feature
embeddings, and applying non-neural models on the
feature embeddings. Fan was responsible for statisti-
cally analyzing the embeddings, generating visualiza-
tions, and training a new feature embedding (this is
ongoing work and does not appear in this report). Both
Fan and Jimmy built infrastructure, reproduced earlier
work, read papers, brainstormed ideas, and wrote this
document.

Acknowledgements

We thank Aarti Bagul and Hao Sheng for their kind
help and mentorship.

References

Huang, Gao, Liu, Zhuang, Weinberger, Kilian Q, and
van der Maaten, Laurens. Densely connected con-
volutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, volume 1, pp. 3, 2017.

Kingma, Diederik P and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed representations
of words and phrases and their compositionality. In
Advances in neural information processing systems,
pp- 3111-3119, 2013.

Rajpurkar, Pranav, Irvin, Jeremy, Zhu, Kaylie, Yang,
Brandon, Mehta, Hershel, Duan, Tony, Ding, Daisy,
Bagul, Aarti, Langlotz, Curtis, Shpanskaya, Katie,
et al. Chexnet: Radiologist-level pneumonia de-
tection on chest x-rays with deep learning. arXiv
preprint arXiw:1711.05225, 2017.

Wang, Xiaosong, Peng, Yifan, Lu, Le, Lu, Zhiyong,
Bagheri, Mohammadhadi, and Summers, Ronald M.
Chestx-ray8: Hospital-scale chest x-ray database and
benchmarks on weakly-supervised classification and

localization of common thorax diseases. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3462-3471. IEEE, 2017.

WHO. Standardization of interpretation of chest ra-
diographs for the diagnosis of pneumonia in children.
2001.

Xie, Junyuan, Girshick, Ross, and Farhadi, Ali. Un-
supervised deep embedding for clustering analysis.
In International conference on machine learning, pp.
478-487, 2016.

Yao, Li, Poblenz, Eric, Dagunts, Dmitry, Covington,
Ben, Bernard, Devon, and Lyman, Kevin. Learning
to diagnose from scratch by exploiting dependen-
cies among labels. arXiv preprint arXiv:1710.10501,
2017.



