Pruning for Efficient Road Segmentation

Anjali Roychowdhury Justin Dieter
Department of Mechanical Engineering Department of Mathematics
Stanford University Stanford University
aroyc@stanford.edu jdieter@stanford.edu
Chandler Watson

Department of Computer Science
Stanford University
watsonc@stanford.edu

Abstract

In this project, we explored applications of structured and unstructured pruning
on a road segmentation network for fast and lightweight autonomous vehicle
applications. While road detection is a recurrent challenge for many autonomous
vehicle applications with a high potential for impact, significant computational
complexity and a lack of sufficient labeled data have made it one of the more
challenging problems in the field. For our project we extended Marvin Teichmann’s
KittiSeg, based on a FCN8-VGG16 model, to allow for two styles of network
pruning prominent in the literature. In addition, an attempt at layer-wise pruning
was made, using a genetic algorithm on a set of binary vectors to evolve proper
layer drops. Despite the resilience of neural networks demonstrated by Mittal et
al. to random pruning, this appeared to cause learning to stagnate. Unstructured
pruning, however, worked well, and a well in-progress structured pruning extension
was created as well. Both are currently implemented at https://github. com/
watsoncm/PruneSeg.

1 Introduction

Our group applied deep learning to road image segmentation to detect driving lanes, as if we were
writing the software to process the data taken by a camera on top of an autonomous vehicle. Despite
the prevalence of the need for road segmentation in the autonomous vehicle industry and the high-
potential for impact in improving autonomous performance and safety, there are yet to be highly
effective, efficient, and reliable solutions. Furthermore, in addition to significant computational
complexity and difficulty in generating labeled data, this application is further complicated by the
number of conditions under which it must perform well, including partial occlusions, shadows, and a
variety of weather conditions.

For this project, our group extended Marvin Teichmann’s KittiSeg open-source framework using the
KITTI Road Detection dataset [4] presented with the benchmarks given by the paper [2]. Random
patch sampling is performed to obtain 256x256 pixel inputs to the network. An FCN8-VGG16 model
then encodes it and upsamples it via transpose convolutions into a block with one softmax output per
original pixel. Thus, we output a classification of “road” or “not road” on a pixel by pixel basis for
the entire image and calculate our evaluation metrics — specifically average precision and maximum
F1 score — from these pixel classifications.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

Efficient deep models for monocular road segmentation [6]

This paper explores possible modifications to existing road segmentation networks to use less
parameters and operate more efficiently while using innovative techniques to reduce the number of
filters in the later layers of the network. This ensured that it operated more efficiently and required
less compute time to perform the segmentation.

Structural Compression of Conv. Neural Networks Based on Greedy Filter Pruning [1]

This paper attempts to deduce an algorithm to eliminate filters within the convolutional network to
damage performance the least. It assigns a rank to each filter in their importance in the network and
the selectively prunes the filters that are least necessary. This approach causes significant boosts in
efficiency since it prunes entire kernels in the model but accordingly degrades accuracy significantly.

To prune, or not to prune: exploring the efficacy of pruning for model compression [7]

This was the paper that gave the method we applied to our model for selective pruning. It surveyed
the possibility of using pruning of neurons to compress arbitrary neural networks. It gave precise
formulas for how and when pruning should be applied to ensure that the model learns around the
pruning. Since this approach only prunes individual neurons it should give only minor reductions
in accuracy but should give a slight performance boost with fast sparse matrix multiplication and
greatly improve memory efficiency.

Pruning Convolutional Neural Networks for Resource Efficient Inference [5]

This approach is similar to [1] but it uses a Taylor expansion with loss gradients to approximate the
importance of each convolutional kernel. Other methods only used first-order approximations, so
this method is able to outperform them. Since this method still prunes entire kernels it also yields
significant boosts in performance at the cost of non-negligible deductions in accuracy.

3 Dataset and Features

This project worked from the KITTI Road Detection Dataset, which is comprised of 579 1242x375
pixel color images of roads in a variety of locations, lighting conditions, and weather, which are
labeled with ground truth color maps (Figure 1). The original dataset contains 289 train images and
290 test images, the former of which was pre-divided by KittiSeg into a 241/48 train/validation split.

As we were working with a remarkably small dataset of under 300 total images and were attempting
to achieve ambitious F1 scores, pre-processing and data augmentation were crucial to generate good
results. As provided by the framework, pre-processing consisted of random patch training on 256x256
pixels with random cropping probability of 0.8.

4 Methods

4.1 FCN8-VGG16 Model

The main model we worked with and attempted to modify was the FCN8-VGG16 model imple-
mented by KittiSeg. A typical VGG16 model is a network with convolutional and max pooling
layers followed by fully connected layers as shown in Figure 1. However, in the FCN8-VGG16
model, the fully connected layers are replaced with convolutional layers to avoid losing spatial
data. Finally, upsampling with transpose convolutional layers is used to obtain a final layer with
the input dimensions of the input image. Each pixel is then processed through a softmax to output
their respective segmentation class probabilities. This model is trained with a standard pixel-wise
cross-entropy loss function.

4.2 Genetic Algorithm for Layer Trimming

The goal of our project is to extend the FCN8-VGG16 model to operate more quickly. We hypothe-
sized that layers could potentially be removed from the model and near equal performance could be

24 224 =3 234 334 G

112 x 128
56 5 256
*F’i;’::f’@.x-z.wr.|-3]L ” =_i“-_:fT:m:f:l;z
£ ; &lﬁéﬁ—?f 1% 1% 4096 1x1x 1000
- ¥ f V
ra
&

ﬂ convolution+ReLLT
~— max pooling
fully connected+Rel.l

| softmax

Figure 1: The structure of a standard VGG16 model [3].

achieved as the layer after the pruned one learned how to use the higher-level features. To account for
shape changes, we manually spliced in tf.Tile operations wherever a change of shape necessitated it.

The challenge is then figuring out which are the optimal layers to removed so that performance can
be boosted while still maintaining a high F1 score. To do this we used a simple genetic algorithm
with crossover and mutation on a set of five binary vectors describing which layers to keep/drop.
Crossover was modeled as a set union with a given drop probability, and mutation was given by
randomly toggling 1-5 bits. The fitness function was given by the F1 score if the model outperformed
the baseline, and negative infinity if it didn’t.

4.3 Model Pruning

Our final approach was utilizing a more precise pruning method given by [7], as described in the
related work section. We took the model pruning functionality provided in tf . contrib and extended
KittiSeg to use it, allowing for sparser kernels and thus less storage-intensive networks. We train for
1500 steps with a target sparsity for each convolutional layer of 0.5 and 0.75, along with a baseline of
0.0. All other hyperparameters were kept the same. An RoC curve was generated using a custom
tweak to the KittiSeg code to dump precision and recall values at various thresholds.

Additionally, the framework given by [7] in tf . contrib was leveraged to create a structured pruning
setup as in [5]. Although this wasn’t finished, it provided a strong baseline to work off of and could
quickly result in a pruning framework for KittiSeg that would more readily lend itself to runtime
efficiency (rather than just storage efficiency).

5 Experiments/Results

In our project, we implemented three different models: Model 1, our baseline model; Model 2,
a model with dropped layers selected by a genetic algorithm; and Model 3, a model with pruned
neurons. The second and third models were hoping to match or improve the accuracy of the first
model while improving the eventual runtime.

Figure 2 gives an example of output from our pruned segmentation model and Figure 3 gives an RoC
curve for our final pruning model. Qualitatively, it can be seen to identify the road almost perfectly
despite the neurons pruned from the model, with the exception of some error on the right side of the

Figure 2: Output of our pruned segmentation model.

1.2

0.8

0.6

04

0.2

0 0.2 04 0.6 0.8 1 1.2

Figure 3: An RoC curve for our final pruning model.

image. Below is a table of the metrics recorded for each pruned model, with 0% sparsity being the
baseline:

|| Sparsity Average Precision FI Score ||

0% 92.1684 94.5185
50% 91.8006 93.8772
75% 91.8063 92.8530

The model produced from our genetic algorithm failed to produce a good F1 score, yielding an F1
score of only 33.3214. We believe this is because the model requires every convolutional layer and
is unable to function with layers trimmed. However, the genetic algorithm approach may still be
applicable in future work when applied to deciding which filters or neurons to prune but entire layers
cannot be pruned.

6 Conclusion/Future Work

Ultimately, performing pruning as in [7] proved to be the most successful. However, to achieve speed
with unstructured pruning, we would need to implement efficient sparse convolution. Nonetheless,

we did get a huge benefit in model size and memory efficiency which is very beneficial for building
embedded systems that could actually be used in an autonomous vehicle.

Our approach using a genetic algorithm ultimately proved to be unsuccessful. Dropping layers from
the model resulted in huge drops in performance, as later layers have no information on how to
interpret the activations of earlier ones. However, the approach with a genetic algorithm could be
interesting to apply to the pruning approach where a genetic algorithm is used to select which neurons
to prune. Furthermore, random search approaches with stronger theoretical guarantees such as the
cross entropy method could be explored instead of a genetic algorithm if random search methods are
to be applied to the pruning approach.

Overall, we explored several methods and successfully found an approach to producing a pruned
model that produces almost equal F1 score to the baseline model for road segmentation. With fast
sparse matrix multiplication implemented this model should show a significant jump in performance
to the original baseline and already shows significant improvements in memory efficiency. Beyond
this, further progress on implementing structured pruning could result in massive improvements in
both storage and runtime efficiency.

7 Contributions

Chandler Watson - Worked on model pruning and contributed widely to other areas of the code.
Anjali Roychowdhury - Contributed to the genetic algorithm and did a significant portion of the
writing tasks.

Justin Dieter - Worked on evaluation of models and did a significant portion of the writing tasks.

References

[1] R. Abbasi-Asl and B. Yu. Structural compression of convolutional neural networks based on
greedy filter pruning. CoRR, abs/1705.07356, 2017.

[2] J. Fritsch, T. Kuehnl, and A. Geiger. A new performance measure and evaluation benchmark for
road detection algorithms. In International Conference on Intelligent Transportation Systems
(ITSC), 2013.

[3] D. Frossard. Vgg in tensorflow, 2016. [Online; accessed March 22, 2018 at
https://www.cs.toronto.edu/ frossard/post/vgg16/vggl16.png].

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013.

[5] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks
for resource efficient inference. 2016.

[6] G.L. Oliveira, W. Burgard, and T. Brox. Efficient deep models for monocular road segmentation.
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
4885-4891, 2016.

[7] M. X. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. CoRR, abs/1710.01878, 2017.

