CS230

Music Stream Splitting

Vikul Gupta Nidhi Manoj
Department of Computer Science Department of Computer Science
Stanford University Stanford University
vikulg@stanford.edu nmanoj@stanford.edu

Sandhini Agarwal
Department of Symbolic Systems
Stanford University
sandhini@stanford.edu

Github link: https://github.com/vikul-gupta/cs230-instrument-separation
Abstract

Music splitting is an extremely important task for the audio industry. In this paper,
we experimented with models to isolate one instrument from a mixed audio file.
The neural network model consists of two fully connected layers which act as
encoders, a bidirectional LSTM, and an additional two fully connected layers to
then decode the data. It takes in spectograms as input and predicts the spectogram
corresponding to the isolated instrument channel.

1 Introduction

Given audio, splitting songs into different melodies (vocal, piano, guitar etc) is crucial for generating
sheet music and recreating, mixing, and performing songs but has seen little automation. As members
of Stanford’s South Asian a cappella team, we were interested in the problem of separating out an
instrument’s audio from a mixed audio track.

Mixed track audio clips (wav files) of 15 seconds (30-45 second time frame) containing all
instruments/vocals were converted into a spectrogram (time versus frequency). Our neural network
model used this spectrogram to output a predicted spectrogram of just the isolated drums. We
compared this predicted drums spectrogram with a spectrogram of the true isolated drums audio
(isolated instrument audio files were part of the dataset). Additionally, the predicted drums
spectrogram was converted back into an audio (wav) file that we could listen to.

2 Related work

There has been prior work done in separating vocals from songs. Simpson, Roma and Pumbley
describe their process in their paper 'Deep Karaoke: Extracting Vocals from Musical Mixtures’.
They used Fourier transforms to convert audio into spectrograms that were fed into a convolutional
neural network, which performed better than linear methods such as matrix factorization (NMF). We
extending their work by also applying non-linear methods to the problem of separating a particular

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



instrument stream from songs. We employed librosa libraries to convert audio into spectrograms and,
after learning through CS230 course material, used an LSTM to process the time-series data.

3 Dataset and Features

MelodyDB is a database containing 122 songs with wav files for the mixed track and each isolated
stream. There are 20 + instruments and the most represented instruments are drums, bass, piano,
vocals and guitars. The full dataset was acquired upon request from the creators of MedleyDB. Each
song came with a .yaml file with metadata about the instruments in the song etc.

There are 43 piano, 60 drums, and 935 other instrument wav files. The logistic regression model
distinguishes if a file is just piano. We used the 43 piano and 47 other randomly sampled instrument
files. From these 90 wav files, 80 were randomly-sampled and placed in the train set (= 88 percent)
with the remaining 10 in the test set (= 12 percent).

The neural network model attempted to isolate out the drums instrument stream from the mixed
audio song. Of the 43 drums songs, 35 were used in the train set and 8 were used in the test set.

The scipy.io.wavfile.read function - which accepts a wav file and returns a numpy array - was used to
process the audio files. The resulting numpy array was a time dependent sequence of numbers. The
array contained two channels, corresponding to the frequency of left and right headphone steroes,
over many time steps. This array was the input for the logistic regression and ICA models. The
Librosa library was used to convert the array into a spectrogram - resulting in input dimensions of
(songID, time steps, frequencies) = (35, 2580, 513) for the train input into the neural network model
(approach 3).

Mix spectrogram

+0d8
exsz
1008
4096
2048
2048
s0d8
2024
048
¥ oo
- s0ds
i3 6045
o 7048
o w0dB
o 15 3 a5 6 715 5 10
Time

Figure 1: Example Spectogram of Mixed Song

This problem was interesting and challenging for many reasons. Firstly, instrument tracks were
usually overlaid on top of another in the audio, which made it more difficult to parse out the different
sources of music. In addition, certain instruments had lower loudness than others. Noticing the wide
range of loudness when we listened to songs in our dataset, we chose to analyze instruments, such as
piano and drums, that were more audible in the song files.

4 Methods

Approach 1: Binary Classification (Baseline)

We carried out logistic regression using the scipy logistic regression implementation. We used
the OVR (one-vs-rest) loss function which is used for binary problems to fit each label to 1/0 and
achieved ~ 80% accuracy with 10,000 features.

We initially ran our model using 20 features (20 time steps of music where each time step corresponds
to 0.12 seconds) from the wav file’s numpy array of data discussed above. Our accuracy fluctuated a
lot and ranged from 0.3 to 0.9. We then increased the number of features to 1,000 and then eventually















