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Abstract

Knowledge distillation is a methodology of transferring dark knowledge from a teacher DNN to a
student DNN along with regular training, which can help deploying a less complex DNN on resource-
constrained edge computing hardware for on-the-fly training scenarios. In this work, we study the
knowledge distillation on MNIST and CIFAR-10 datasets, with a variety of student-teacher DNN pairs
explored. Results show that knowledge distillation provides regularization benefits for both shallow and
deep networks, and special use cases such as having unlabeled or partial dataset can benefit from dark
knowledge of teacher models as well.

1 Introduction

Deep neural networks (DNNs) have been widely deployed on the cloud for a wide spectrum of applications from
computer vision to natural language processing. For real-time inference, deploying DNNss efficiently on edge devices
(e.g., mobile devices and IoT nodes) are typically constrained by low-power requirement and limited memory/storage
resources. Hence, the simplicity of a DNN model becomes crucial for those scenarios. Knowledge distillation (KD),
formulated by Hinton ef al. [1], is a promising methodology to distill teacher models and partially transfer the dark
knowledge to simpler student models. These student models, trained with the combination of original training set and
distilled knowledge from teacher models, can provide a viable solution for resource-constrained hardware
implementations of DNNs. They may contain richer knowledge than vanilla student models yet possess less
complexity (in terms of either total number of parameters, complexity of hidden layers, network depth, or a
combination of above) than original teacher models. The role of dark knowledge is not well understood and interpreted
so far, therefore, it is worth exploring knowledge distillation with various experiments to further probe into its impact,
which may provide useful insights and guidelines for future hardware-software co-implementations. In this project”,
we explore knowledge distillation for image classification on MNIST and CIFAR-10 datasets, using various training
set schemes (full-size, data-less, unlabeled). Shallow, deep, and very-deep neural networks are used during the KD
experiments (MLP, CNN-5, ResNet-18, WideResNet, ResNext-29, PreResNet-110, DenseNet). Visualization and
analysis are further performed to provide better understanding of knowledge distillation and dark knowledge.

2 Related Work

The knowledge distillation for the purpose of model compression is first proposed in [2]. The following related work
[3] explores the relationship between depth and width of a neural network in terms of capacity and representation
power, which involves training a wide but shallow student network with deep teacher network. Finally, Hinton et al.
generalizes and re-formulates knowledge distillation in [1], where a student is set to utilize the information contained
in the “soft targets™ from teacher’s softmax probability distribution (softened by a temperature hyperparameter) to aid
the training of student models for the same task. Those soft targets may have dark knowledge helpful for student
models to also learn from what is hidden in the incorrect classes that a trained teacher produce given the same sample.
Recent works have also been reported to utilize such dark knowledge from intermediate features/statistics or other
metadata of the teachers [4], [S]. Additionally, model quantization and distillation can be combined to enable model
compression [6].

*Github repo: https://github.com/peterliht/knowledge-distillation-pytorch
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3 Datasets

We use MNIST handwritten digits dataset [7] and CIFAR-10 dataset [8] for the image classification experiments with
knowledge distillation. For MNIST with 10-class grey images, 60,000 samples are used for training, and 10,000
samples are used for validation. Normalization is used for preprocessing ([-1, 1] based on mean/std [9]). For CIFAR-
10 with 10-class RGB images, 50,000 samples are used for training, and 10,000 samples for validation. Normalization
is also used for preprocessing [10]. Data augmentation is used, including random cropping and random horizontal flip.
For MNIST, unlabeled training is explored during experiments. For CIFAR-10, training using full-size and 5%
training set is explored. MNIST and CIFAR-10 are standard datasets for experimentation, and the goal is more about
exploration and less about finding a final single best model on “test” or real-world images. Therefore, we use all the
originally available training samples in the training set, and the official test samples all in the validation set for
experimentation and exploration.

4 Methods

Training with KD for students first requires training of a teacher model. This can be done as usual using cross entropy
loss on the ground truth labels. Then, the first step of knowledge distillation from a regularly-trained teacher model is
to convert the pre-softmax logits, z; computed for each class into a probability, gi, by the following equation with the
temperature T (T >= 1) [1]:

exp(zi/T)
e 1
L Yexp(zj/T) M

With higher temperature, we can get “softer” probability distribution over classes. Since the softmax scores are now
softened, the hidden information from the incorrect classes may become more evident to be distilled. The knowledge
learned from training a teacher model on the training set with normal softmax (i.e., 7= 1) can be distilled and partially
transfer to a student network, by minimizing the new knowledge distillation (KD) loss (Lgp) [1]:

Lgp Wstuaent) = aT? x CrossEntropy (Q§,Q1) + (1 — a) * CrossEntropy (Qs, Vere)- ()

Q¢ and Q7 are the softened “targets” of the student and the teacher using the same temperature 7' (> 1), and o as
another hyperparameter tunes the weighted average between two components of the loss. The first component of the
KD loss forces the optimization towards a similarly softened softmax distributions for the student, whereas the second
component of the KD loss forces the optimization towards approximating the ground truth labels as usual. a = 1
corresponds to using distilled knowledge only with “unlabeled” data for student training.

We have implemented the KD loss and the training pipeline using PyTorch, in the following manner:

(i) We implement the semi-customized KD loss by combining the built-in KL-Divergence loss (for the first component
of KD loss) and the CrossEntropy loss (for the second component). This semi-customization approach can better
utilize the underlying C-backend for efficiency.

(ii) A teacher network is built and trained with regular softmax scores (log-softmax in PyTorch for numerical stability)
and CrossEntropy loss. The model state/parameters are saved.

(iii) Computation graph is created for the student network along with the new KD loss for training. For training mini-
batches, QF values are fetched from the static teacher model under evaluation mode. We optimize the code to perform
pre-fetching before mini-batches, which provides 50X speedup for training the student (due to relatively large size of
the teacher models described shortly afterwards). Experiments are done using one Tesla K80 GPU.

5 MNIST Experiments: Unlabeled KD Training

We first explore the knowledge distillation using 3-layer MLPs on MNIST dataset as introduced in [1]. SGD optimize
with momentum as 0.9 is used. Training batch size is 128, and the training pipeline follows what is described in the
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previous section. Results are summarized in Table 1 (reporting validation accuracy on 10,000 samples). The teacher
network MLP-784-1200-1200-10 has 2 hidden layers with ReL.U activation units and dropout to reduce variance, and
learning rate is set to be 0.01. The trained teacher model is then distilled for training a smaller MLP model of the same
depth. It shows that the knowledge from larger teacher model indeed helps the student model generalize better (98.18%
validation accuracy). The marginal increase in accuracy is consistent with the results reported in [1] on MNIST. The
interesting observation is that, with a larger learning rate, the vanilla student model has decreased performance and
also worse performance than the teacher model, yet the student model with distilled knowledge is able to leverage the
higher learning rate yielding a better performance (98.50%) than the teacher model. Besides, for the scenario where
on-the-fly training on edge devices (e.g., for privacy and security concerns) is needed without access to training labels,
we conduct experiments training the student MLP with knowledge distillation but without training labels, as shown
in the last row of Table 1. With distilled knowledge from the teacher MLP, the student can still learn a great deal of
information. This is probably because the teacher MLP can achieve low bias (> 99% training accuracy), which makes
the distilled softmax distributions close to the “true” distributions. One could intentionally modulate teacher’s bias
and see how bias-variance tradeoff would further impact the learning capability of the student with only distilled
knowledge for training, which was not explored due to time constraints.

NN architecture & Learning rate: Learning rate:
distillation details 0.01 0.1
MLP-784-1200-1200-10 98.30%
Learning rate too high
(dropout = 0.8) (as the teacher model)
MLP-784-800-800-10 98.10% 97.75%
MLP-784-800-800-10 w/ KD 98.18% 98.50%

MLP-784-800-800-10 w/ KD
97.69% 98.16%
(unlabeled training data)

Table 1: MNIST experiments with knowledge distillation

Knowledge distillation: ResNet18 -> 5-L CNN
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Figure 1: evaluation of distilling temperature and alpha as KD hyperparameters

6 CIFAR-10 Experiments: Shallow and Deep Distillation

In this section, we describe the KD experiments and analysis on CIFAR-10 dataset. We first define two baseline
networks and train the corresponding models. Training batch size is 128 for both. The first one is a 5-layer CNN. We
use three convolution (3 by 3 CONV kernels, with stride and padding both equal to 1) layers, each followed by batch
normalization, max pooling, and ReLU activation. The first CONV layer has 32 output channels, which get doubled
for the following two CONYV layers. After that, two consecutive fully-connected (FC) layers are added with Dropout
added. It is trained using Adam with 0.001 learning rate. Another baseline model is a 18-layer ResNet [11], which is
trained from scratch with 200 epochs on one GPU. Training uses SGD optimizer with SE-4 weight decay and 0.1
learning rate, which is scheduled to decrease to 0.01 after 150 epochs. The ResNet-18 achieves 94.175% validation
accuracy.
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Dropout=0.5 No dropout Evaluation accuracy
5-layer CNN (10k samples)
83.51% 84.74%
3 CONV (w/BN) + 2 FC Baseline ResNet-18 94.175%
5-layer CNN w/ ResNet18-KD 84.49% 85.69% + KD WideResNet-28-10 94.333%
>layetCON ; 2 + KD PreResNet-110 94531%
5% training data
+ KD DenseNet-100 94.729%
5-layer CNN w/ ResNet18-KD
/ 66.71%
5% training data + KD ResNext-29-8 94.788%
Table 2: shallow distillation experiments Table 3: deep distillation experiments

First, we explore “shallow” KD training of the student 5-layer CNN, using the trained ResNet-18 as the teacher. We
evaluate the impact of distilling femperature and alpha, as the two KD hyperparameters, on the distillation
performance (validation accuracy). Since the purpose here is not to find the optimal hyperparameter combination (due
to computational and time resource constraints), we use grid search of certain empirical values instead of random
search. Results of 40 training experiments are summarized in Figure 1. Intuitively, alpha being close to 1.0 means that
we put more “trust” on teacher’s dark knowledge (even if it may have biases). From the results, it seem to indicate the
we should not put too much faith in teacher (e.g., setting alpha to be 0.99) unless we use high distilling temperature
(e.g, 8.0). Then, we compare adding or removing Dropout for regularization. Table 2 shows that knowledge distillation
itself serves as some degree of regularization, to help the student generalize better even without Dropout. Here, it is
then interesting to explore such regularization to deal with low-bias, high-variance overfitting situation. We then
conduct another set of experiments, using only 5% percent of the original 50,000 training set (2500 samples). Even
“shallow” CNN can easily overfit, yielding much worse validation accuracy. Here, it is shown that although the benefit
is limited, but indeed the distilled knowledge from ResNet-18 trained on full training set can improve the validation
accuracy with 5% training samples.

We then perform “deep” distillation experiments using the baseline ResNet-18 as a student, instead of a teacher. Here,
the idea is to explore whether deeper, and more complex state-of-the-art models can be used to help training a student
that is already deep enough (in terms of representation power). We choose several state-of-the-art CNN’s that excel at
image classification, including Residual network variants such as WideResNet [12], PreResNet [13], ResNext [14],
as well as DenseNet [15]. We use pre-trained models provided by [17] on CIFAR-10 for these teachers, which all
yield better accuracy than the student ResNet-18. For each selected teacher, the student ResNet-18 is trained from
scratch for 170 epochs, following the aforementioned optimizer and learning rate schedule. Distilling temperature and
alpha are set to 0.95 and 6.0, respectively. After four different experiments, the results are summarized in Table 3.
For the four teachers, the depth increases from 28 (WideResNet-28-10) to 100 (PreResNet-110). The best
improvement is obtained from ResNext-29-8 distillation. This shows that even for the state-of-the-art DNNs,
knowledge distillation can be leveraged to further provide benefits of improving generalization ability. Further
hyperparameter tuning may yield even better results, which was not performed due to limited computational resources.

7 Visualization and Analysis

Figure 2 shows the confusion matrix obtained on the validation set, using KD-trained ResNet-18 with ResNext-29 as
the teacher. This only shows the “outside world”, and we probe into the “inside world” of knowledge distillation by
visualizing the softmax distributions of the ResNext-29 teacher model. As shown in Figure 3(a), on a random subset
of 100 training samples, the femperature used for distilling ResNext-29 has a significant impact on the “softmax”
outputs. When temperature rises to 2.0 from 1.0 towards 6.0, the distributions become softer and softer, corresponding
to the so-called “dark knowledge” used throughout literature. Such dark knowledge is then partially transferred to the
training process of the student ResNet-18. Further error analysis, part of which is shown in Figure 3(b), reveals how
knowledge distillation helps the ResNet-18 to improve generalization performance. Given 4 random test samples
which baseline ResNet-18 predicts wrong, KD-trained ResNet-18 leverages the softened targets of ResNext-29 and
shifts the softmax score distributions to better match the “true” data distributions. Such statistics may be further
“recycled” to improve on the knowledge distillation.
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8 Conclusion and Future Work

In this work, we experiment with MNIST and CIFAR-10 datasets, unlabeled and data-less schemes, and both shallow
and deep neural networks to explore knowledge distillation. It is shown that KD can improve a model’s generalization
performance, under both shallow and deep distillation cases. Unlabeled and data-less scenarios should leverage the
knowledge distilled from large models for resource-constrained hardware. Regularization benefits of KD need to be
further explored on ImageNet dataset for large-scale tasks in the future work. Since the teacher models trained on
ImageNet may have high biases, it is expected that the distillation need to be tuned to balance the knowledge from
true labels with soft targets (not only in the sense of hyperparameters), where a modified form of KD loss may be
required. Our open-source code can be accessed via: https://github.com/peterliht/knowledge-distillation-pytorch

9 Team Contribution

Haitong Li performed all the work presented in this final report.
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Figure 2: confusion matrix of ResNet-18 with ResNext-29 as the teacher
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Figure 3: (a) visualization of distilling temperature’s impact on softmax distributions. (b) error analysis on 4 random
test samples which the baseline ResNet-18 got wrong whereas the KD-trained ResNet-18 got right
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