Investigation on Robustness of Quantized Ternary
Weights for Deep Neural Nets

Ying Hang Seah Behzad Haghgoo
Department of Computer Science Department of Computer Science
Stanford University Stanford University
yinghang@stanford.edu bhaghgoo@stanford.edu

Golrokh Khoddambashi Emami
Department of Computer Science
Stanford University
golkorh@stanford.edu

Abstract

Quantization of Deep Neural Networks into ternary values is a promising model
compression technique as ternary weight networks have been shown to achieve
similar accuracy as their full precision counterparts. However, little study has
been done to investigate the advantages and disadvantages of using ternary weight
networks. Thus, we decided to investigate the relative robustness of ternary weight
networks and full precision floating point networks against random and adversarial
noise as the robustness against noise is a critical aspect of machine learning models
in production usage. To evaluate the relative robustness, we used a ternary weight
network and a full precision network with ResNet20 architecture on CIFAR-10
dataset. Our results obtained showed that both networks are equally robust against
random noise and adversarial noise. Thus, we have successfully demonstrated
that ternarizing a model does not cause any significant degradation regarding its
robustness against noise.

1 Introduction

Deep neural networks (DNN5s) have the potential to power amazing intelligent technology such as
drone systems, smart homes and wearable devices. However, deploying deep learning models onto
devices with limited memory and computing power is a challenge as deep neural network models
require a large amount of memory to store the weights and running the models are computationally
expensive. One possible solution is to compress DNNs using weight quantization, thus allowing the
model to get an estimated output that can be computed faster with fewer multiplications. [1-9]

Ternary weight quantization is a new approach proposed by Zhang and Liu to have the weights
discretized into 3 values: -1, 0, 1. Ternary weight networks (TWN) appears to be a promising
compressing model that has comparable performance compared to the full precision (FP) floating
point weight networks.

Although there are studies assessing the performance of TWNs on a variety of tasks, there are not
much literature examining their advantages and disadvantages for different purposes. Thus, we
intend to compare the performance of TWNs and FP networks when subjected to random noise and
adversarial noise to evaluate the relative robustness of the models.

CS230: Deep Learning, Winter 2018, Stanford University, CA.

2 Related work

Quantization of weights has long been studied as a method for compressing networks, with some
papers in this area dating back to 1994.[8] However, the performance of these implementations on
DNNs were not promising up until recently. Deng et al. and Rastegari et al. proposed binary methods
for transforming weights to -1 and 1. However, these models suffered significant loss in performance
when compared to FP equivalents. A newer approach was proposed by Zhang and Liu to have the
weights discretized into three values: -1,0, and 1. By having a stronger expressive ability than binary
methods, TWNs have a huge performance gain relative to their binary counterparts. TWNs are able
to attain performance that is comparable to FP weights while still being compressed weights that
require 16x to 32x less memory usage than FP networks. Further conducted by Zhu et al. have further
confirmed the performance of TWN to be similar to FP. [2]

3 Dataset and Model

To investigate the robustness of TWN vs FP, we are using a CIFAR-10 dataset on ResNet20. CIFAR-
10 is an image classification benchmark containing images of size 32 * 32 RGB pixels in a training
set of 50000 and a test set of 10000. CIFAR-10 was chosen as the dataset as the small image size
allows for faster computation and quicker reiterations of the project.

In the TWN ResNet20 Model, all the layers were quantized into ternary values based of a trained FP
ResNet20 model except for the first convolution filter layer and the last fully-connected layer. For
quantization we used a method similar to the paper [1] and [2], which is as follows.

We treat quantization as a regularizer that places a ternary constraint on all weight vectors of the
network. Since ResNet uses ReLU activations, small perturbations of original weights, result in small
changes in each layer. In other words, it is plausible to assume close weight matrices generate close
activation functions.

Therefore, our objective in ternarizing weights is to find the closest weight matrix to our floating
point weights matrix which satisfies our constraints of being ternary.

In other words
o, Whx = argmin ||W; — aW}||? (1)
a,W}

We will use the following function for ternarizing

1 W, >A
Wi=40 if|[Wy|<A)
-1 ifW;; <-A

We will show that there is no deterministic solution to this problem therefore we treat A as a
hyper-parameter.

Where W is the original weight matrix of layer ¢ and W/ is the weight matrix for that layer.
We can expand this to get

o, Wix = argvrlfltin(llWiHZ — al[WilllIW] + IW11%) €)

i

If we define Ia = {j|W}, = 1}, where W, is the 4" index of W/ (after reshaping it to a vector).
Then we can simplify equation (2) to become.

Wi =Y 11wyl)
JEIA
A*, Whx = argmin(o®|Ia] —a Y [[Will + > [[W;,1%) (5)
Wy jeln j€la

And we can see that the o that minimizes this function is

II Al ©

JEIA

By substituting this in equation (4) we get

A* —argmax |I | Z [[W3;11) @

JjEIA

But there is no deterministic solution to this problem [13]. Therefore, this is a hyperparameter of the
network. It can be shown that A = 0.7FE(|W|) is a good approximation [1].

It is important to note that we didn’t rely on having the three possible weights as {—1,0, 1}. Any
other {negative, zero, positive} tuple is acceptable. Therefore there is no necessity to have the positive
and negative values equal. In fact, this is what we do in this paper as shown in Figure 1.

In each step of training, we calculate gradients as normal but with weights that zeros and ones, then
change the weights accordingly, ternarize with respect to A and calculate the cost.

Trained
Normalized Intermediate Ternary Weight Q| Final Ternary Weight

Full Precision Weight Full Precision Weight y Weig uantization y Weig

-/ \ -

i Ny :

-1 0 T . 4 10
_____________________________ gradient:

— Feed Forward «---- Back Propagate Inference Time

Figure 1: Backpropagation quantization technique (Figure excerpted from Trained Ternary Quantiza-
tion)

4 Methods

To investigate the relative robustness of the networks, we will evaluate the performance of the network
against test images with random and adversarial noise added. On the original dataset with no noise,
the FP ResNet20 achieved 91.75% topl accuracy and the TWN ResNet20 achieved 91.71% topl
accuracy.

To study the robustness of the network against random noise, Gaussian noise, Poisson noise, Salt and
Pepper noise, and Speckle noise were added to the test set. Images with noise were then propagated
to both the FP network and TWN and the performance were then recorded.

Original Gaussian Poisson Salt and Pepper v Speckle

Figure 2: CIFAR-10 images with different forms of random noise

To assess the robustness of the networks against adversarial noise, an image was first passed through
the network and multiple iterations of back-propagation was performed to the original image to
maximize the loss of the network.

§=—aVJ ®)
Where J is the cost function, « is learning rate and ¢ is the noise matrix which is added to the image.

) &)

Ni = MeANimage, (

Adversarial example generation FP TWN

S

Original: Car alpha * noise Adversarial Example: Airplane

Figure 3: Adversarial example generation

Once the adversarial example is successfully generated, we then compute the mean absolute differ-
ences between the original image and the adversarial image as shown in equation (7). A network
with a higher mean absolute difference indicates that a network is more robust against adversarial
examples as more adversarial noise need to be added to fool the network into generating a false
output.

5 Results and Discussion

After experimenting with different types of noises and varying the intensity of the noise added, we
managed to obtained interesting results that indicates the performance of the TWN can rival that of
FP even under noisy datasets.

Dataset FP Top 1(%) | TWN Top 1(%) | FP Top 5(%) | TWN Top 5(%)
Original 91.75 91.71 99.76 99.75
Gaussian 19.09 19.93 72.54 72.52
Poisson 18.76 19.58 72.48 72.40

Salt and Pepper 51.09 49.53 79.56 79.11
Speckle 10.34 10.43 52.38 52.59

Figure 4: Top 1 and Top 5 accuracy for FP and TWN against random noise

The Top 1 and Top 5 accuracy of FP and TWN are comparable even after noise was added to the test
set. This shows that the robustness of both FP networks and TWN have equivalent robustness against
random noise.

Adversarial FP TWN
Mean Absolute Difference | 73.819317 | 73.819370

Figure 5: Mean absolute difference of adversarial noise

Since both FP network and TWN obtained very similar values for the mean absolute difference, it
shows that there is no significant difference between the relative difficulty to generate new adversarial
examples between FP networks and TWN. One explanation for this can be that as stated in section 3,
the linear part of ReLU causes close weight matrices to result in close outcomes. Therefore if the
scaled matrix oW} is close to W we will get similar calculations in both networks and therefore
similar behavior. Apparently, because of its low performance outcomes, a binary compression is
not complex enough to make the matrices close enough [9] but TWNSs’ high accuracy can mean the
matrices are close enough. Therefore, it is not surprising that results are similar.

6 Conclusion

As a regularizer, ternary weight networks bring major advantages in memory and computation cost
for small devices. In our project, we successfully demonstrated that both FP networks and TWN
are equally robust against random and adversarial noise. Our work alongside Zhu et al.’s research

can prove that ternary weight networks can be a reasonable replacement for floating point weight
networks without any trade-offs. Thus, compressing a model using ternarizing appears to be a
promising technique for machine learning applications on small devices with limited computing
power as it does not result in any degradation in its robustness against both random and adversarial
noise.

For further research, this project can be extended to more comprehensive classifier networks such
as AlexNet to observe how well ternarizing can generalize across various architectures. Another
interesting step would be to visualize the activations to see how ternary weight networks and floating
point weight networks differ in perceiving inputs with adversarial noise.

7 Contributions

Prior to working on evaluating the relative performance of ternary and full precision networks, we
were experimenting with the concept of meta-networks, a network which takes in the input of a
classifier and then outputs the weights for another network. From a general perspective, our idea was
to give neural nets the power to generalize their knowledge. A vision for our idea was to make a
meta-network that can generate a network that plays a game when the parameters of the game have
changed. However, after long discussions and experimenting, we decided to switch our project as
we discovered that there was very application for such a network. As such, we have detailed the
contributions made for the meta-network and ternary weight network on the tables below.

Work Ying Hang | Behzad | Golrokh
Researching on Topic v’ v’ v’
Developing the Model v’
Literature Reviews v’ v’ v’
Weight Extraction from DarkNet Vv’ v’ v’
ImageNet Crawler v’
Weight Alteration Code v’
Resizer Code v’ v’ v’
Writing the Milestone v’ v’
Editing the Milestone v’ v’

Figure 6: Breakdown of member contributions on Meta-Networks Project

Work Ying Hang | Behzad | Golrokh
Researching on Topic v’ v’ v’
Literature Reviews v’ v’ v’
Recreating Ternary Network v’

Random Noise Generator v’ v’
Adversarial Noise Generator v’ v’
Coming up with Evaluation Metric v’

Poster Preparation v’ v’ v’

Figure 7: Breakdown of member contributions on Investigation of Robustness of TWN and FP

8 References

[1] Li, F., Zhang, B., & Liu, B. (2016). Ternary weight networks. arXiv preprint arXiv:1605.04711.

[2] Zhu, C., Han, S., Mao, H., & Dally, W. J. (2016). Trained ternary quantization. arXiv preprint
arXiv:1612.0106

[3] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Klingner, J. (2016). Google’s
neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint

arXiv:1609.08144.

[4] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). DoReFa-Net: Training low bitwidth
convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160.

[5] Deng, L., Jiao, P, Pei, J., Wu, Z., & Li, G. (2017). Gated XNOR Networks: Deep Neural Networks with
Ternary Weights and Activations under a Unified Discretization Framework. arXiv preprint arXiv:1705.09283.

[6] Sung, W., Shin, S., & Hwang, K. (2015). Resiliency of deep neural networks under quantization. arXiv
preprint arXiv:1511.06488.

[7] Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A Survey of Model Compression and Acceleration for
Deep Neural Networks. arXiv preprint arXiv:1710.09282.

[8] Khan, A. H., & Hines, E. L. (1994). Integer-weight neural nets. Electronics Letters, 30(15), 1237-1238.

[9] Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016, October). Xnor-net: Imagenet classification
using binary convolutional neural networks. In European Conference on Computer Vision (pp. 525-542).
Springer, Cham.

[10] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.

[11] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[12] Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning ICML-10) (pp. 807-814).

[13] Hwang, K., & Sung, W. (2014, October). Fixed-point feedforward deep neural network design using ternary
weights. In Signal Processing Systems (SiPS). 2014 IEEE Workshop on (pp. 1-6). IEEE.

[14] pytorch. (2018). PyTorch. Retrieved from https://github.com/pytorch/pytorch
[15] czhu95. (2017). Trained Ternary Quantization (TTQ). Retrieved from https://github.com/czhu95/ternarynet

[16] utkuozbulak. (2017). Convolutional Neural Network Adversarial Attacks. Retrieved from
https://github.com/utkuozbulak/pytorch-cnn-adversarial-attacks

[17] seahyinghang8. (2018). CS230 Ternary Operators. Retrieved from https://github.com/seahyinghang8/cs230-
ternary

