CS5230

Solving Sudoku with Neural Networks
Charles Akin-David, Richard Mantey
[aakindav, rmantey}@stanford.edu

ABSTRACT

Sudoku is one of the most popular logic-based
games of all time, exploiting individuals’
abilities for relational reasoning and pattern
development. We explore the wuse of
convolutional neural networks (CNN), and
long short term memory (LSTM) networks in
solving these puzzles. While the results show
that both approaches to solving this problem
are feasible, the CNN model is more
computationally efficient, allowing for better
training, consequently yielding higher training
and test accuracies.

1. INTRODUCTION
Logic based games like Sudoku have been
shown to help delay neurological disorders
like Alzheimer's and dementia. In solving
Sudoku puzzles, players rely on both the
temporal and positional dependencies
between the numbers on the board. Motivated
by these semantics, we decided to attempt to
solve Sudoku puzzles using CNNs and RNNs,
- Bidirectional LSTMs - presenting us with the
opportunity to explore relational and visual
interaction networks. These methods use
relational reasoning, which requires that the
networks draw “logical” conclusions about the
relationships between the numbers in the
puzzle. The inputs to the networks were 81
length arrays representing the numbers on an
unsolved 9x9 sudoku board. The outputs were
the predicted 81 length array representations
of the solved boards.

34|65 6 73|48

8 9 2 | 8 9 1

Figure 1. Sample sudoku board showing quiz
(input) and its solution (desired output)

2. RELATED WORK
Search Algorithms: The most popular
approaches to solving sudoku utilize tree
search algorithms and heuristic search
algorithms such as best-first search, A", and
backtracking. These methods allow for the
incorporation of the rules of sudoku into the
problem solving process as heuristics,
increasing the likelihood of convergence on a
solution. Convergence though comes at the
heavy cost of computational speed , i.e.
depending on the complexity of the quiz,
some of these may take a very long time to
converge on a solution. [1] [2]. Given this
cost, there have been attempts to solve these
puzzles using Machine learning approaches
especially as testing times for ML models are
usually less than the time needed to run an
entire search algorithm.

Neural Networks: Currently there’s an
application on the iOS app store named Magic
Sudoku. [3] This app solves sudoku using a
convolutional neural network. This allows the
application to be blazing fast while solving
sudoku boards with up to 99% accuracy.

OptNet solves sudoku using a network
architecture that integrates optimization in the
form of quadratic problems. This allows the
network to learn sudoku problems purely
from data with high accuracy. The main
drawback of this approach is that it has a cubic
complexity to the number of variables and/or
constraints which means that the number of
hidden layers must be small in order to
guarantee real-time predictions which
compromises accuracy. [4] Recurrent
Relational Networks obtain state-of-the-art
results by solving 96.6% of the hardest sudoku
puzzles. This approach is seeming to be the
best approach for solving Sudoku puzzles,
however the authors mention that Residual
Networks like those used for AlphaGo may
result in even higher accuracies. [5]

3. DATASET AND FEATURES

The dataset was formed using a sudoku
generator, created by Ariel Cordero[6]. The
generator first creates full sudoku (9x9)
boards using the constraints that the numbers,
1-9, be unique in each row, column, and (3x3)
subgrid. These fully generated boards were
deemed as solutions and become the labels. To
build the puzzles, the generator logically
“plucks” numbers off the full solution boards
ensuring that the removed number can still be
deduced from the remaining numbers on the
board. The plucked number is replaced with a
0 to represent a blank in the board. The
plucking mechanism usually leaves 46-49
blanks in the board. The resulting quiz puzzle
was used as the input, and, paired with the
correlating solution, each (quiz, solution) pair
was used as a training example. 1,000,000
examples were generated, 999,000 examples
were kept for the training set and a 100
examples were set aside for the train-dev set.
The test set contained 100 examples sourced
from actual sudoku boards with unique

solutions, evenly distributed in difficulty. Code
was added to flatten out the (9x9) quiz,
solution boards to strings of length 81 and to
save these string pairs in a csv file. This file
was read into the CNN model, which
transforms them into 9x9 matrices. The LSTM
converts the same 81 length strings into 81x9
One-hot label representations. The main
features used were the labels representing the
number for each cell on a sudoku board. The
table below shows a representation of the
quiz/solution training example from Figure 1.

Quiz 000009010306180700000654000740000
030002090600010000058000345000003
068407080900000

Solution | 4257398163961827458716543297485269
31532891674619473258967345182153268
497284917563

Table 1. Dataset Example

4. METHODS
Two Deep Learning architectures were
employed: Convolutional Neural Networks
and Bidirectional LSTMs. Both methods used
a final softmax layer to generate probability
values over the K expected labels - K =(1, 2, ...
9) - using:

P(Cylx) =plx) = &= Q)

K
Y e
=1

Where x represents the outputs from the
previous layer, and a, = w,'x + b, , with w,
and b, representing the softmax layer weights
and bias for the class k. The argmax over the
soft probabilities were then taken to choose
the most likely class label for a given cell in
the board. The loss for both models was
calculated using the Cross Entropy Loss.

K
— 2 (k, to4) log P(t=klx) (2)
=1

For class labels t € {1, ..., K}, we use an
indicator function to denote whether or not
the chosen label t is equal to class, k, and if so
we sum the log probability of k equalling t
given x. Finally, for learning, both
architectures utilized the adaptive momentum
estimation (Adam) optimizer with standard
hyperparameters: @ =0.001, 8 =0.9, 8 ,=09,
€=10%
Require: «o: Stepsize
Require: f3;, 3, € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: : Initial parameter vector

mg + 0 (Initialize 1% moment vector)

vo + 0 (Initialize 2" moment vector)

t +— 0 (Initialize timestep)
while 6, not converged do

tt4+1

gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)

my + B1-mi—1 + (1 — B1) - g« (Update biased first moment estimate)

vy 4 B2 - vy—1 + (1 — B2) - g7 (Update biased second raw moment estimate)

¢ < mq /(1 — B}) (Compute bias-corrected first moment estimate)
0y « v¢/(1 — B) (Compute bias-corrected second raw moment estimate)
0 ¢ 0;—1 — o - My /(v/Tr + €) (Update parameters)

end while

return 0; (Resulting parameters)

Figure 2. Adam Algorithm

Adam optimization involves using the first
(m,) and second (v,) moments of the
gradients. The first moment involves the
exponentially decaying average of the previous
gradients and the second moment involves
exponentially decaying average of the previous
squared gradients. The Adam optimizer then
uses the combined averages of previous
gradients at different moments to better
adaptively update the parameters. [7]

4.1 CONVOLUTIONAL NEURAL
NETWORKS

pooled Fully-connected 1
feature maps fearure m

feature maps pooled aps
feature maps

@
r mﬂx)
r r 8 .
r r -4
I o O

@

)

Outputs
Input Convolutional Pooling 1 Comolutional pooling2 *
layer 1 layer 2

Figure 3: CNN

A 16 layer CNN was built with each of the first
15 convolutional layers having 512 filters, with
the final layer being a 1x1 convolution with 10
filters. Before running the batched inputs
through the CNN, the dimensions were
expanded by one, ie. (N, 9, 9, -1) to retain the
(N, 9, 9) shape throughout the network. The
extra dimension is changed depending on the
number of filters for each convolutional layer.
The 15 convolutional layers each used a filter
size of 3x3, ‘same’ with 0 padding, pad size of
1, and a stride of 1. The 3x3 filter size allowed
the model to focus on solving each 3x3
subgrid at a time. The 1x1 convolutional layer
used 10 filters, changing the shape of the final
dimension such that softmax could output 10
probabilities over labels 0-9. The argmax over
the soft probabilities were then taken and the
most probable label for the corresponding cell
chosen. The model’s architecture uses
inference to solve the whole sudoku board at
once, ie. by virtue of the softmax step adding
soft probabilities to all cells across all labels.

4.2 BIDIRECTIONAL LSTM

Figure 4. Bi-LSTM

The sudoku problem was also modelled using a
set of 3 bidirectional LSTMs. Each LSTM had
200 hidden and memory units. the desire was to
model the human approach to solving sudoku
puzzles. Intuitively, to solve a cell, humans
examine the row, column, and subgrid that the
cell exists in. Consequently, quizzes were
represented as sets of 3, 81x1x9 one-hot
representations over the 9 possible labels. Each
input was a concatenation across the rows,

columns, or 3x3 subgrids for a single quiz. The
inputs were fed into their corresponding LSTMs
1.e. the first LSTM took in a row representation,
the second, a column representation, and the
last, a subgrid representation all for the same
quiz. The outputs from all 3 models were pooled
together and fed into a feed-forward layer with 9
neurons to convert them back into a 81x1x9
vector. This output was then passed through a
softmax layer to output probabilities values
over labels 1-9, with the highest probability
(argmax) for each cell chosen.

5. EXPERIMENTAL RESULTS/
DISCUSSIONS

The primary metrics used in evaluating the
accuracy of the models were accuracy and F,
score. Accuracy for both the CNN and LSTM
were calculated as the percentage of correctly
labelled cells, across a set of quizzes. F, score
encodes the precision and recall. Precision is
the proportion of all cells in a set of quizzes
that the model labeled as ‘k’, which truly have
the label k. Recall is the proportion of cells,
in a set of quizzes, that actually have the label
‘k’ and were accurately classified by the model
as k. Below is a summary of the final results:

Average
Architectur | Training | Test Test
e Accuracy (Accuracy| F, Score
1layer LSTM 0.791 0.467 0.465
2 Layer LSTM 0.814 0.467 0.465
3 Layer LSTM 0.814 0.467 0.465
10 Conv CNN 0.97 0.78 0.856
15 Conv CNN 0.997 0.86 0.898

Table 2. Summary of Results

5.1 CONVOLUTIONAL NEURAL
NETWORK

Normalized confusion matrix

0.01 0.02 0.00 0.00 0.01 0.01 0.02 0.01
Joo3 0.01 0.02 0.03 0.01 0.01 0.01 0.01 08

40.02 0.01 0.00 0.00 0.01 0.00 0.03 0.02

0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.04 06

0.01 0.02 0.00 0.01 0.02 0.01 0.01 0.01

True label

'] -] ~ o w & w N -

0.00 0.01 0.00 0.00 0.02 0.03 0.01 001
0.02 0.02 0.01 000 0.01 0.02

{0.01 0.02 0.02 0.01 0.01 0.00 0.02

Jo.01 0.02 0.01 0,02 0.02 0.03 0.01 omﬂ

T T T T T T r T 00
A 1T B B 5 A 9
Predicted label

Figure 5. Normalized Confusion matrix for 3 layered
bidirectional LSTM(train acc. = 0.814,

test acc. = 0.467)

Val Test Val Test Val Test

Acc Acc Acc
num 3 0.74 5 0.76 10 0.78
epochs
conv 10 | 0.72 12 0.74 15 0.81

layers

dropout 0.2 0.66 01 0.72 0.05 0.77

165 le-3 0.77 | 2e-3 0.73 le-4 0.74
lambda

Table 3. CNN Hyperparameter Tuning

Table 3 shows hyperparameter tuning for the
CNN with a base of 3 epochs and 10 conv
layers. The test accuracy generally increases
with more epochs, with the best model having
been run using 15 epochs [Table 2]. Test
Accuracy generally increased with the number
of conv layers, however, after 15, the accuracy
began to decrease which was due to
overfitting. Dropout and L2 regularization did
not lead to an optimal test accuracy so neither
were included in the final model. This is
because, the variance issue discovered from
running the CNN model stemmed mainly
from the different data distributions, as the
training set contained mostly easy to medium
puzzles while the test set contained an even
distribution of puzzles of difficulties ranging
from easy to expert. The confusion matrix
[Figure 5], illustrates the absence of

misclassification bias in the CNN model. This
suggests that this model can be leveraged for
future improvements.

5.2 BIDIRECTIONAL LSTM

Normalized confusion matrix

0.06 0.07 0.06 0.06 0.07 0.06 0.07 0.08

0.06 0.06 0.09 0.04 0.08 0.06 0.09 0.07
04

0.06 0.09 0.07 0.04 0.07 0.08 0.05 0.06

0.06 0.07 007010 0.04 0.09 0.06 0.08

1

2

3

4

5 {0.06 0.05 0.07 0.07 0.07 0.07 0.07 0.07

6 {0.06 0.07 0.04 0.06 0.06 0.09 0.07 008

7 {0.07 0.09 0.07 0.05 0.07 0.06 0.06 0.09 e
8

9

True label

0.05 0.07 0.06 0.08 0.06 0.07 0.09 0.06

0.05 0.07 0.04 0.06 0.05 0.11 007 0.07

N R~ S N S Y
Predicted label

Figure 6. Normalized Confusion matrix for 3 layered
bidirectional LSTM

1 to 3 layered LSTMs were used. [Table 2] It
was discovered during training that it would take
an impractical amount of time to train any one
model over the entire 999,000 training
examples. In order to deal with the
computational costs, the models were run on
1000 training examples with a batch size of 1,
over 100 epochs. While batching allowed for
decreased computation time, for the same
number of epochs, smaller batches yielded much
higher accuracies. From the experiments, a
marginal increase in training accuracy was
observed as the number of layers were increased
[Table. 2], illustrating the minute benefits, both
in accuracy and computational speed, to using
more than 2 layers. This suggests that given our
current model configuration, an increase in the
number of training epochs, or hidden
dimensions, would be needed in order to
improve train accuracy. The model also
generalized equally across our test examples
regardless of layer number i.e. 0.47 test
accuracy. It is likely that, owing to the high bias

problem, the model has barely learnt enough
about the sudoku puzzles in our dataset to even
attempt to generalize across real-world
examples. Training on more data would likely
resolve this. The normalized confusion matrix
[Figure 6], shows that the model misclassified
all classes about equally, suggesting that with
better training, higher accuracies may be
attained. Together, these results lead us to think
that in order to truly perform well on this task
we would need to incur the computational
expense of training on a larger dataset, and that
the human approach to solving sudoku puzzles
may be inherently inefficient.

6. EXPERIMENTAL RESULTS/
DISCUSSIONS

In this study we have shown that it is possible
to solve sudoku using Deep learning
approaches. We employed the use of CNN
and LSTM architectures and found that, the
CNN approach was structured more
efficiently and consequently performed better
at solving sudoku quizzes with a training
accuracy of 99.7% and test accuracy of 86%.
Owing to the structuring of the LSTM
problem, it yielded a lower training accuracy
of 81% and test accuracy of 47%. The LSTM
however showed promise in that it it did not
possess misclassification bias. In order to
improve on this work, the training set of the
CNN needs more difficult puzzles. In the case
of the LSTM, an increase in training set size
and a reconsideration of the structure of the
LSTM approach may yield better accuracies
without compromising computational speed.
Finally, an extension of both methods to either
incorporate reinforcement learning with
backtracking or recurrent relational networks
will allow for higher accuracies.

References:

[1]Ace.ucv.ro, 2018. [Online]. Available:
http://ace.ucv.ro/anale/2012_vol2/05 Nicolae Ileana.pdf [Accessed: 12- Feb- 2018]

[2]"Solving Sudoku Puzzles using Depth First Search", Dan's Website, 2018. [Online].
Available: http://logicalgenetics.com/solving-sudoku-puzzles-using-depth-first-search/.
[Accessed: 20- Feb- 2018]

[3]"Behind the Magic: How we built the ARKit Sudoku Solver", Prototypr, 2018. [Online].
Available:
https://blog.prototypr.io/behind-the-magic-how-we-built-the-arkit-sudoku-solver-e586e5b68 5b0.
[Accessed: 20- Feb- 2018]

[4]Proceedings.mlr.press, 2018. [Online]. Available:
http://proceedings.mlr.press/v70/amos17a/amos17a.pdf. [Accessed: 20- Feb- 2018]

[S]Arxiv.org, 2018. [Online]. Available: https://arxiv.org/pdf/1711.08028.pdf. [Accessed: 20-
Mar- 2018]

[6]"Arel's Sudoku Generator", Ocf.berkeley.edu, 2018. [Online]. Available:
https://www.ocf berkeley.edu/~arel/sudoku/main.html. [Accessed: 23- Jan- 2018]

[7]Arxiv.org, 2018. [Online]. Available: https://arxiv.org/pdf/1412.6980.pdf. [Accessed: 20-
Feb- 2018] - Adam

Contribution

Charles - CNN
Richard - Bi-LSTM

We both worked on data generating/cleaning, training model, analysis, background research,
hyperparameter tuning, and analysis.

Github Repo: https://github.com/charlesakin/sudoku

