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Abstract

The objective of this work is to use deep learning for an
early fusion of camera and lidar information to perform 3D
bounding box estimation and object identification through
a PointFusion architecture. Using a PointNet model to di-
rectly consume the point clouds and a standard CNN to pro-
cess the corresponding camera image, the obtained point
and image features are learnt to be combined optimally by
a fusion network in order to perform 3D object detection
with accuracy. The model is evaluated on KITTI 3D Object
Detection dataset that features real traffic driving scenes
captured through a camera-lidar setup. Based on the re-
sults obtained, our model achieves a state-of-the-art accu-
racy with a bounding box average IOU of 0.71 and a clas-
sification accuracy of 95.62%.

1. Introduction

The world is witnessing a cusp in technical revolution,
where autonomous vehicles (AVs) are much closer to be-
coming a reality than ever before. However, one major con-
cern before the autonomous vehicle technology can be put
to use is its reliability and safety, a task that highly depends
on the detection of the vehicle’s surrounding. While sensing
of the environment is predominantly performed by imaging
sensors, LIDAR sensors are mostly entrusted with percep-
tion and localization [SH16]. However, both types of sen-
sors carry certain inadequacies which can be taken care of
by fusing their individual capabilities into a robust sensing
and perception mechanism.

In this context, we aspire to integrate the important infor-
mation carried by an image from a camera and a 3D point
cloud from a LIDAR. Ideally, an AV should be able to iden-
tify and locate various signs and obstacles with precision to
avoid collisions and damages. However, the main challenge
here lies in 3D object detection that crucially impacts the
AV’s performance. While Convolutional Neural Networks
have significantly advanced the state of 2D detection, 3D
object detection problem still remains an open challenge.
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Thus, in this project, we aim to implement a deep learn-
ing approach that can combine image and depth informa-
tion to give a 6 DoF pose and the 3D bounding box dimen-
sions, along with identification of all objects of interest in
the scene.

The report is organized as follows. After conducting a
brief review of the recent works associated with object pose
estimation in Section 2, we discuss the PointFusion model
in Section 3. Further, the specifications about the dataset
with the implementation and experimentation details are
discussed in Section 4. The obtained performance results
are also discussed. Finally, conclusions are drawn in Sec-
tion 5 and target for future work is explained in Section 6.

2. Related Work

Seif et al. looks into the details of some of the neces-
sary technologies required for autonomous driving [SH16].
Informing on all aspects, the need for a robust and pre-
cise environment detection system is predominantly em-
phasized. Specific to this problem, some works have used
geometry-based approaches, relying either on strong cat-
egory shape priors or ground-truth object CAD models
[AME™ 14] [FTVGO06] [ZDY *14]. This approach makes it
difficult for them to scale to larger datasets. Another work
leverages on depth information per frame and multi-view
scene information to obtain accurate 3D object proposals
[PLIT17].

On the other hand, some new studies have proposed
to directly tackle the 3D object detection problem in dis-
cretized 3D spaces. However, these methods are often pro-
hibitively expensive because of the discretized volumet-
ric representation, which makes the computation time and
space expensive [SX14] [SX16].

Insightful of the potential of deep learning approaches,
some researchers have used deep learning approaches to
perform 3d box regression from images or depth data. In
one such work [XCLS17], Xiang et al. jointly learn a view-
point dependent detector and a pose estimator by clustering
3D voxel patterns learned from object models. Another ex-
ample of such approach that uses preprocessing of the 3D



input before using a deep learning model is [Li17], where Li
et al. focus on detecting vehicles and process the voxelized
input with a 3D fully convolutional network.

One of the important works that explore fusing image
and lidar data is a multi-view 3D detection model, MV3D
[CMWT17], that generates object detection proposals in the
top-down lidar view. It then projects the proposals to the
front-lidar and image views, fusing all the corresponding
features to do oriented box regression. However, this model
assumes that all objects lie on the same spatial plane and can
be localized solely from a top-down view of the point cloud.
Another approach by Asvadi et al. performs multimodal ve-
hicle detection using LiDAR and camera data [AGPT17].
The point cloud from LiDAR is transformed to form a depth
dense map and reflection dense map. Then 3 separate mod-
els are trained and vehicles are detected by using the com-
bined predictions. However, such a method highly relies on
simplifying assumptions and takes decisions independent of
the information from other sensors.

Overcoming such limitations, the PointFusion [XAJ17]
network has no scene or object-specific limitations, as well
as no limitation on any kind and number of depth sensors.
Using a PointNet [QSMG17] architecture to directly pro-
cess the point clouds prevents any lossy or simplifying pre-
processing of data. As a result, our generic method esti-
mates both the 6-DoF pose and spatial dimensions of an
object without object category knowledge or CAD models.

3. PointFusion

This section explains the basic architecture of PointFu-
sion which performs 3D bounding box regression by re-
trieving information from a corresponding camera image
generated by the camera sensor and a raw point cloud pre-
pared by the LiDAR sensor. This model has three main
components: 1) a PointNet [QSMG17] network’s variant
for processing raw point cloud through deep learning while
well respecting the permutation invariance of points in the
input; 2) a CNN that extracts image appearance and classi-
fication features; 3) a fusion network that combines both
features to perform the 3D bounding box estimation and
recognition on the input. Figure 1 gives an overview of this
model.

As can be understood from Figure 1, the PointNet variant
is responsible for processing the raw point cloud data, and
the ResNet-50 model extracts visual features from an input
image. The obtained point and image features are then fed
in to a fusion network that processes its input using several
layers and outputs a 3D bounding box prediction and object
classification. The following subsections offer more insight
into these comprising parts of our PointFusion model.

3.1. PointNet

PointNet is a unified architecture that directly takes point
clouds as input and effectively learns a set of optimiza-
tion functions/criteria that select interesting or informative
points of the point cloud and encode the reason for their se-
lection. The basic architecture of PointNet processes each
point identically and independently. Key to the approach is
the use of a single symmetric function, max pooling, which
respects the permutation invariance of the points. Also,
since the input is just a point, it is easy to apply rigid or
affine transformations as each point transforms indepen-
dently, making it easy to add a data-dependent spatial trans-
former. Figure 2 presents a symbolic representation of the
architecture of PointNet which gives us the required point
features.

3.2. ResNet

ResNet-50 [HZRS15] pretrained on ImageNet is avail-
able as part of the Keras Applications and can be directly
imported. Using a transfer learning approach, we employed
this trained model to give useful image features for the im-
ages in consideration. Following a general pre-processing
of the dimension space to match the requirements of the
ResNet-50 model, the output from the final average pooling
layer gives us our image features.

3.3. Global Fusion

As shown in Figure 1, the last comprising layer in the
PointFusion architecture is the fusion layer which processes
the image and point cloud features and directly regresses the
3D locations of the eight corners of the target bounding box
along with the learned classification result. Consisting of 3
hidden layers having 512, 128, and 128 units, respectively,
the fusion layer gives the box-corner locations (in the point
cloud coordinates) and the classification prediction as two
outputs.

4. Experiments and Results

Selection of various choices for training the layer, as well
as for the pre-processing and processing is an intuitive task
supported by empirical observations. This section details
the experimentation specifications along with the obtained
results.

4.1. Data

The presented model is trained on the KITTI 3D Ob-
ject Detection dataset, which contains annotated real-world
traffic situations ranging from freeways to inner-city scenes
captured from a VW station wagon.The dataset in total de-
rives from 6 hours recording of traffic scenarios at 10100 Hz
using a variety of sensor modalities such as high-resolution
color and grayscale stereo cameras, a Velodyne 3D laser
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Figure 2. An overview of the PointNet layer

scanner and a high-precision GPS/IMU inertial navigation
system.

For our purpose, we use the point clouds generated by
the Velodyne 3D laser scanner and the corresponding left
color image captured by a Sony ICX267 CCD. In all, we
have 7481 examples that are split for training, development,
and test, in a 90-5-5 percentage ratio. The split is random
and the number of precise examples in each set are given in
Table 1.

Train Data | Dev. Data | Test Data
No. of examples 6,750 365 366

Table 1. Train-Dev-Test Split

4.2. Pre-Processing

The velodyne setup on the station wagon that produces
the point clouds is a rotating 3D laser scanner that gener-
ates data points at a rate of 10 Hz, 64 beams, with 0.09
degree angular resolution, 2 cm distance accuracy, collect-
ing 1.3 million points/second, with a horizontal and ver-
tical field of view of 360° and 26.8°, respectively. These
are a lot of points and we need to trim down the input size
for correspondence, feasibility and relevance. For our use,

we filter the point clouds falling in the camera view an-
gle and randomly sample 2048 points from it. These are
then fed through a Spatial Transformation Network in or-
der to canonicalize the input space. Further, the ground
truth labels are transformed to the velodyne coordinates for
tractability in prediction.

4.3. Network Specifications

This subsection lists the network specifications arrived
at after extensive experimentation. The used model has
1,808,027 trainable parameters, most of them belonging
to the PointNet architecture. The original PointNet model
[QSMG17] uses batch normalization following all fully
connected layers to reduce the covariance shift in the in-
put features. However, we found that batch normalization
hampers the 3D bounding box estimation performance. our
understanding on this phenomenon is that batch normaliza-
tion aims to eliminate the scale and bias in its input data,
which is detrimental to the task of 3D regression, where ab-
solute numerical values of the point locations are helpful.
Therefore, our PointNet variant has all batch normalization
layers removed.

Additionally, we are using Adam Optimization and a de-
caying learning rate for training.

4.4. Loss Function

Using an optimum loss function is an important selec-
tion of training an effective model. Since our model has
two outputs, the loss function used to train the model for
the classification is mean-squared error (gave better results
than categorical cross entropy loss) and the box output is
smoothL1 given by:

L= Z smoothLl(xf)’}fset, mﬁ,ffset)
i



Here, xf;} fset 18 the offset between the ground truth box
corner locations and the i-th input point.

SmoothL1 loss was found to perform better than a mean
squared error loss, as the loss value is not compromised for
a false result with very distinct values than a ground truth.
Figure 3 shows the accuracy curve from 100 epochs for the
bounding box output using mean squared error, which when
compared to the main model’s loss curves in Figure 4 vali-
dates the reason for choice. The box accuracy for smoothL.1
is more than the box accuracy for mean squared error.
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Figure 3. Box output accuracy vs Epochs (100) for training with
mean squared error
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Figure 4. Box output accuracy vs Epochs (100) for training with
smoothLL1

4.5. Results

Thus, with these important training choices, the model
was trained to give the loss curves, presented in Figure 5
and Figure 6. It may be noted here that the model has some
avoidable variance in absence of batch normalization lay-
ers. However, a better box corners prediction accuracy is
the reward.
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Figure 5. Box output loss vs Epochs (250)
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Figure 6. Classification ouptut loss vs Epochs (250)

Table 2 offers more information about the model’s per-
formance on the training, development, and test set. The
bounding box accuracy of the model is evaluated by us-
ing average IOU. Just for reference of performance scale,
[PLI*17] gets a best case IOU of 0.55 on UW-RGBD
dataset.

Train Data | Dev. Data | Test Data

Class. Accuracy 96.27% 96.16% 95.62%

Box Average IOU 0.73 0.73 0.71

Table 2. Model Performance

Further, Figures 7, 8 and 9 demonstrate some correct
result predictions by the developed PointFusion model for
the considered categories of image examples (Red: Ground
truth; Ink Blue: Car; Cyan Blue: Pedestrian; Green: Van).
It may be noted here that the reason these classification
classes are chosen is because they form the dominant cat-
egory of annotations in the KITTI dataset. An interesting
observation to note here is that the model is able to perform
well even for challenging examples like the highly occluded



car in Figure 7, giving an IOU as high as 0.84.
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Figure 9. Correct Prediction: Van

Also, Figures 10, 11, and 12 show some incorrect model
prediction cases with an objective to derive a holistic un-
derstanding about the model’s performance. The model’s
prediction with Figure 10 is almost correct in terms of lo-
calization and volume estimate. However, it fails to pass the
threshold set for an IOU to be classified as correct. Some-
times, liberal and non-tight ground truth annotations can
also be a reason for such types of errors.

Figure 11 shows a worse prediction, which can be con-
sidered almost correct in terms of localization but not with
respect to volume. Further, Figure 12 shows an incorrect
prediction with respect to localization and volume estimate
of the bounding box. Perhaps, this example is extremely
difficult as the car is highly occluded.

5. Conclusion

This work performs deep fusion of camera and lidar in-
formation using a PointFusion model and is able to achieve
credible 3D bounding box estimation and recognition re-
sults. The strength of the model comes from the fact that

Figure 10. Wrong Prediction: IOU Calculation

Image with 3D bounding box; 10U = 0.07 Class Probability = 0.57

Figure 12. Wrong Prediction: Volume & Position Estimate

inputs are processed using a heterogeneous network archi-
tecture and lossy input preprocessing is duly avoided. Also,
unlike other methods that use a multi-stage pipeline and
perform late fusion by employing techniques like Kalman
Filters, the used model performs an early deep fusion. In
our hope, such a technique can prove useful with industries
beyond autonomous vehicle technology, industrial robotic
arms being one such case.

6. Future Work

In the presented work, the variance of the regression tar-
get is directly dependent on the particular scenario. Gener-
ating box proposals by sliding windows instead of directly
regressing can prove useful. Also, instead of randomnly
sampling a set of points from the camera view angle, bias-
ing the sampling for points in regions of interest can im-
prove results. Also, a single end-to-end 3D detector can be
a promising research possibility.

7. Contributions

Ayush Gupta: Lidar Chain
Malavika Bindhi: Camera Chain



8. Code

https://github.com/malavikabindhi/CS230-PointFusion
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