Music Genre Classification Using Deep Learning

Matthew Mezaf]
MS Candidate in Electrical Engineering, Stanford University

Job Nalianys{f|
Coterminal Degree candidate, Electrical Engineering, Stanford University
(Dated: March 23, 2018)

We apply deep learning to the problem of music genre classification. In this project, we design
and train a Convolutional Neural Network (CNN) capable of classifying 128x128 pixels spectrograms
of music into 8 genres with 92.7% accuracy. This CNN is then used to classify spectrogram slices
obtained from a single song and the resulting ensemble average used to classify the song into a genre
with high accuracy. Our approach is advantageous as it allows music genre classification without
the need for extensive prior knowledge of music and audio features that were traditionally used for

this application.

I. INTRODUCTION

The rapid growth of the digital entertainment industry
in the recent years makes automatic music genre classi-
fication desirable. Correct music genre classification can
play a vital role in such businesses as listeners are likely
to pick a song over another based on the song’s genre as
opposed to the song’s contents. Furthermore, consumers
are likely to browse music by genre as compared to by
other meta-data such as artist [1]. The importance of
solving this problem is further compounded by the con-
tinued interest in Music Information Retrieval (MIR) - a
field concerned with accessing, analyzing and organizing
large collections of music.

In this project, we apply deep learning to the task of
Music Genre Classification. We use music audio spec-
trograms as the input to our network which is a mid-
level representation approach as described in [5]. At first
glance, the use of spectrograms for this task presents a
deluge of data which is challenging to learn information
from. One approach would be the use of a Recurrent
Neural Network (RNN) to run through the spectrogram
or raw audio of the entire song to classify it. This is
however computationally heavy and may be difficult for
the network to learn the necessary general attributes to
determine a genre.

Instead, we use an image representation approach.
We obtain the spectogram of a song of choice and split
the spectrogram into 128x128 pixel slices that represent
about 2.56s of audio. We then train a CNN to be able
to classify each of the slices into one of 8 music genres
shown in table[[] The trained CNN is then used to classify
spectrogram slices from a single song whose genre needs
to be determined. The resulting genre classifications of
the different slices are then used to vote and determine
the most likely genre of the song in question. This ap-
proach allows us to view the task as an image classifi-

* mattmeza@stanford.edu

T jobn@stanford.edu

cation problem and hence take advantage of techniques
used in computer vision tasks. Moreover, this approach
improves the accuracy of the classifications owing to the
voting between the different spectrogram slices.

II. RELATED WORK

Several approaches have been used in addressing this
problem. Most traditional approaches involve the use of
hand-crafted features such as the Mel-frequency cepstral
coefficients (MFCCs) as an input to a network; see [10].
These approaches are disadvantageous as they heavily
rely on the prior specific knowledge of the ML experts
training the network to handcraft the features. This
makes it difficult to scale [2].

With time, there has been increased preference to
learning of the features as opposed to hand-crafting them.
This is advantageous as the network is able to learn fea-
tures on its own which is potentially more efficient and ef-
fective as opposed to being constrained to features known
to the ML experts. This allows for scalability and frees
up the ML experts time to work on high level problems
such as hyper-parameter tuning. For instance [3] uses
Convolutional Deep Belief Networks (CDBNs) to learn
features and classify music into five genres with classi-
fication accuracy equaling or surpassing that obtained
with MFCCs. [4] on the other hand trains a CNN on
beat-aligned timbre and chroma features obtained using
an unsupervised pretrained network on the Million Song
Dataset. These approaches however depend on the avail-
ability of a large amount of data.

More recent approaches, like the one we use in this
paper, make use of the visual representations of audio
signals in the form of spectrograms. The spectrograms
are then used as an input to a CNN enabling the use of
image classification techniques used in computer vision.
For example [2] use MFCC spectrograms as an input to
a CNN to classify music.

Other approaches that do not solely depend on audio
features have been proposed. For instance, [6] proposes
the use of a combination of audio, text and images to

perform multi-label music classification. [7] on the other
hand analyses customers reviews and uses them to clas-
sify the music. These two approaches are particularly
insightful as they promise to ”add context” to the music
genre classification task. Moreover, the multi-label clas-
sification approach addresses the fact that most songs
belong to different genres. We did not however take this
approach given the scope of our project.

Yet another approach that aims at reducing the depen-
dency on prior knowledge and human defined features
involves the use of end-to-end deep learning as discussed
in [5]. This involves the use of raw audio as the input to
a classifier - no need to extract features such as MFCCs
or spectrograms. While the approach presented in [5]
did not outperform the use of spectrograms in terms of
classification accuracy, they showed that end-to-end deep
learning on raw audio is capable of autonomously discov-
ering frequency as well as phase features in audio.

ITI. DATASET AND FEATURES
A. Dataset Description

We obtain our dataset from the Free Music
Archive (FMA) that is available online at http://
freemusicarchive.org/. The archive provides more
than one-hundred thousand tracks under the Creative
Commons Licence to help alleviate the data scarcity
problem and facilitate MIR. The description of the
dataset can be found in [§].

We downloaded 8000 30s long tracks from the
archive at https://os.unil.cloud.switch.ch/fma/
fma_small.zip in the fma_small dataset. This dataset
is summarized in table [[l below.

| | Label | Genre | Number of Tracks | |
0 Electronic 1000
1 |Experimental 1000
2 Folk 1000
3 Hip-Hop 1000
4 Instrumental 1000
5 International 1000
6 Pop 1000
7 Rock 1000

TABLE 1. Summary of the fma_small dataset

Given the format of this dataset and the fact that the
tracks are not already labelled in the dataset, we spent
some time pre-processing and cleaning up the dataset be-
fore training. Section [[IIB describes the pre-processing
steps and scripts we wrote to aid the process. The
scripts and model can be found in our code repository at
https://github.com/jonalkn/cs230_final_project

B. Data Preprocessing

The first step in the data processing pipeline involves
labelling the tracks with their genres. As a result, we
wrote a script named classify_save.py that appends a
genre label (a number from 0-7) as the first part of each
track’s name. This was followed by converting the .mp3
files to .wav format using convertMP3to WAV.py script.
This was motivated by the fact that we are using the
Sound eXchange (SoX) package to obtain the spectro-
grams of the tracks and the package only supports the
.wav format. Using the SoX package, we converted the
tracks to mono and obtained a gray scale spectrogram.
We decided to convert the tracks to mono since stereo-
information is not particularly useful for our network to
learn. Additionally, we used a grayscale spectogram be-
cause it is more computationally efficient and there is no
extra information in using a color spectogram. Most au-
dio is recorded at 44,100 samples per second which would
correspond to 44,100 pixels per second for a spectogram.
For our purposes we decided to use 50 pixels per second of
audio, see createSpectrograms.py, for computational effi-
ciency and because we want the network to learn the low
frequency attributes such as rhythms and syncopation.

It is worth noting that 30s of audio has an overwhelm-
ing amount of data in its spectrogram. We decided that
the best approach would be to slice each track’s spectro-
gram into approximately 2.56s long segments. This was
achieved buy slicing each spectrogram into 128x128 im-
ages and using the slices as the input to our CNN. This
is further advantageous as a single track provides several
images with the same label further increasing the size of
our dataset.

This resulted in about 80k spectrograms which
were split into the train/dev/test sets using the ratio
0.9/0.05/0.05 respectively.

C. Data Augmentation

To avoid over-fitting the training data we performed
data augmentation. This was achieved by adding
”zoomed out” spectrogram slices to the training set. The
”zoomed out” slices were obtained by taking spectro-
grams of all the tracks in the dataset with a 25 pixels/s
as opposed to the original 50 pixels/s. This operation im-
plies that the resulting 128x128 spectrogram represents
5.12s of audio as opposed to the initial 2.56s. This form
of augmentation re-stresses the fact that we want the
model to learn the low frequency attributes to an audio
clip. Further information on the data augmentation is
described in the experiments section.

IV. METHODS
A. Pipeline

Figure [1| shows our proposed pipeline to be used to
classify a song into a genre. To start, the song audio
(.mp3 or .wav) format is converted into its gray scale
spectrogram. A spectrogram is a pictorial representa-
tion of the variation of the amplitudes of the different
frequency components in a signal over time. Only one
channel is needed therefore it is computationally advan-
tageous to convert the stereo audio to mono. The result-
ing spectrogram is then split into 128x128x1 pixels slices
which at 50 pixels/s represents roughly 2.56s long audio
slices. The obtained slices are then forward propagated
through a CNN with a softmax output giving the prob-
ability of each of the slices belonging to a given genre.

Split into 128x128

spectrogram slices Voting between

N N the slice genres

oea
Threshold
= =
p ‘
> A
2 . -' . — @
e . . == -
h / -
128x128 spectrcg am Deep Leam ing
 (CNN)

ogram
(50px/s) .png

Input Song Spectrogram of Entire Song
(mp3/.wav) (.png)

FIG. 1. Pipeline

The classification outputs of each slice are then aver-
aged providing an ensemble average that is a good rep-
resentation of the probability of the song in question be-
longing in the 8 genres. Using a confidence threshold, the
song’s genre can be determined. The pipeline outputs a
horizontal bar graph showing the confidences for the dif-
ferent genres. In the following section, we describe the
design of the CNN that classifies the spectrogram slices.

B. Network
1. Base Model

To get started, we experiment with a baseline CNN to
classify the slices. The baseline CNN consists of 3 convo-
lutional layers. Each layer consists of a 2D convolution,
batch normalization, maximum pooling, and a Relu ac-
tivation. After the 3 convolutional layers we follow with
two fully connected layers with a softmax output. The
performance of the CNN in classifying the spectrogram
slices is summarized in table [T

From the performance of the baseline model, we con-
clude that the model has high bias and hence there is
need to build a deeper network that fits the data better.

|| Set [Accuracy [%]]|

Train TT-1
Dev 55.6
Test 64.1

TABLE II. Baseline CNN accuracy performance on different
sets

The design of the deeper model and its performance is
discussed in sections [V B2l and [V] below.

2. Model Selection Procedure

To better fit the data, we designed a deeper CNN with
the architecture shown in ﬁgure (Refer to the last page
of this report to view an enlarged image of the CNN).
Notable changes to the base network include the use of
average pooling as opposed to maximum pooling for the
layers; use of 5 convolutional layers instead of 3; and
changing the convolutional kernel size to 7 instead of 3
for the first 4 layers and a kernel size of 5 for the last
convolutional layer.The use of a larger kernel size is mo-
tivated by the relatively large image size inputs that we
use.

256

—— B

2909x128

FIG. 2. Deep Model. Refer to the last page for an enlarged
version of this CNN

We implement dropout regularization for the fully con-
nected layers. The performance of this deep model with
only dropout regularization at a rate of 0.8 is shown in
table [[IT] Model#1 column. It can be seen that dropout
rate is not sufficient to regularize the model. We therefore
ran a hyper-parameter search over dropout rates and de-
termined that a rate of 0.6 works best. The performance
of the updated model is summarized in the M odel#2
column in table [[IIl

While model 2 improves the performance on the dev
set, the variance is still high. We therefore decided to
add L2 regularization by adding weight decay. We ran
a hyper-parameter search and determined that a weight
decay factor of 1e —5 works best. Integrating this change
results in the accuracy performance of Model#3. At this
point, we augmented the training set by adding spectro-
gram slices obtained at 25 pixels/s which corresponds to
5.12s of raw audio. Combining these changes and train-
ing the model results in Model#4.

Model#1
no reg.
D-rate = 0.8
Ir = 0.001

Model#2

(search dropout rates)

D-rate = 0.6
Ir = 0.001

Model#3
(search weight decay)
D-rate = 0.6
Wiaeeay = 0.00001
Ir = 0.001

Model#4
(Add data augm.)
D — rate = 0.6
Wiecay = 0.00001
Ir = 0.001

Model#5
(search learning rates)
Data augm.

D —rate = 0.6
Waceay = 0.00005
Ir=1le—4

Train

98

98.8

93.6

95.3

97.7

Eval

87.2

89.5

86.7

89.9

93.4

Test

87.3

89.2

86.9

89.8

92.7

TABLE III. Accuracy for different models. From left to right,
the models are updated after running experiments to choose
hyper-parameters.

Accuracy vs. number of epochs
T T

2
num epochs

Cost vs. number of epochs
T T

s 10 15 2 2 E) E
num epochs

FIG. 3. Learning curve and Cost plots for Model 4. Demon-
strates the erratic nature of the dev curves with a learning rate
of 0.001

Figure |3| shows the learning curve and cost as a func-
tion of the number of epochs for model 4. It can be
observed that the dev curves are very erratic. We thus
assumed that this was most likely due to a large learn-
ing rate. We thus made a hyper-parameter search over
learning rates and settled on a learning rate of 0.0001.
We further experimented with weight decay values and
chose a weight decay factor of 0.00005. Putting it all
together, we picked Model 5 whose performance can be
seen in the last column of table [[TI}

V. RESULTS AND DISCUSSION

Figure {4] shows a plot of the learning and cost curves
versus the training time (number of epochs) for model
5. With a smaller learning rate and increased weight
decay factor, the dev curves are less erratic as compared
to those in figure [3] above.

Running the test set through model 5 discussed above,
figure[]shows a plot of the resulting confusion matrix. As
expected, the model does well on the test set as demon-
strated by the high accuracy along the matrix diagonal.
However, we can see from the confusion matrix in fig.
that a relatively significant portion of electronic spectro-
grams are being classified as Hip-Hop. The same goes
for experimental genre spectrograms being classified as
pop. The latter makes sense given the lose specifications
of the experimental genre.

We tested the CNN in the pipeline shown in fig.
for classifying individual songs. For demonstration pur-

7Es e el

30
num epochs

Cost vs. number of epochs
T

Cost

30
num epochs

FIG. 4. Learning and Cost function plots for Model 5. Note
that with a smaller learning rate, the dev curves are less er-
ratic as compared to the plot in figure 3

Confusion matrix

Elect 0.01 0.01 0.03 0.00 0.02 0.01 0.00
Experti 1001 [8EE] 001 0,02 001 0.01 003 0.01 08
Folk 10-00 0.01 gek=ly 0.01 0.01 0.02 0.02 0.02
= 06
2 Hip-Hop J0.01 0.00 0.01 ge&=ky 0.00 0.01 0.00
5
% nstrt 10.00 0.01 0.01 0.00 BEE 001
= -04
intnt 4001 0.01 001 0.01 0.00 BE 001
pop.OOI 0.02 0.01 0.02 0.01 0.01 =y - 0.2
Rock {0-00 0.00 0.01 0.01 0.00 0.01
> N O > Q N
& &S R SR
&2 « & & R
< Q}Q Q‘\Q' N <&

Predicted label

FIG. 5. Confusion Matriz

poses, we set the confidence threshold to 60% and tested
it using songs that are not from the FMA data set. One
interesting result is when we classified Enya’s Gladiator
soundtrack. Figure[6]shows a horizontal bar graph of the
classifier’s confidence on the song’s genre. As expected,
this is a relatively hard song to classify. The model picks
two top genres as Folk and Instrumental. However, none
of the confidences are greater than the 60% threshold.
It is fascinating to see that while the CNN was trained
on single labelled spectrograms, ensembling allows it to
highlight multiple genres that a particular song may be-
long to.

VI. CONCLUSION AND FUTURE WORK

In this project, we design a deep neural network and
train it to classify a song into one of eight genres. The
network takes in slices of the song’s audio spectogram.
Each slice is then categorized into one of eight genres

This is a hard one! Take a look at the bars

Rock -0

Pop

International

instrumenta! -

Hip-Hop

roix -

Experimental

Electronic F

00 01 02 03 04 05

FIG. 6. Classification output for Enya’s Gladiator Soundtrack

and an ensemble average of the classification outputs is
used to determine the genre of the song. An accuracy of
92.7% is achieved when classifying individual slices in the
test-set with a variance of 5% from that attained on the
training set. To reduce this variance, we could increase
regularization by experimenting with larger weight decay
values and add more training data from the FMA. Alter-
natively, we would consider modifying the cost function
of our current model to penalize mis-classifications (see
confusion table in figure |5)). For instance, penalize classi-
fication of spectrograms in the experimental genre more
if they are classified as pop.

While were able to build a model capable of classifying
songs into 8 genres with high accuracy, it is important
to note that there exists hundreds of music genres that

are not necessarily mutually exclusive. In fact, the sep-
aration of songs into different genres is very fluid, varies
with time, region and culture. This is perhaps exempli-
fied by the 'International’ and ’Experimental’ genres that
may have very different interpretations depending on re-
gion. As a result, only assigning a single label to a song
does not suffice. A future extension of the project would
be implementing multi-genre classification of music that
allows multi-labelling of input spectrograms.

VII. CONTRIBUTIONS

We worked together in designing the CNN model and
experiments to test it out; writing the report and poster.
Job was responsible for ’data collection’ and Python
scripting for data pre-processing and data set prepara-
tion. He further ran the tests on the EC2 AMIs.
Matthew was responsible for the creation of the neural
network architecture and implementing it using PyTorch.
VIII. ACKNOWLEDGEMENT

We would like to thank Suraj and Zahra our TAs for
their suggestions and advice. We also appreciate Ama-
zon for providing AWS credits which provided computing
resources and space to train and evaluate our model.

IX. APPENDIX

The code repository for this project can be found at:
https://github.com/jonalkn/cs230_final_project

[1] J. H. Lee and J. S. Downie, Survey of music information
needs, uses, and seeking behaviours: Preliminary find-
ings. in ISMIR, vol. 2004, 2004, p. 5th.

[2] T. Li, A. B Chan, and A. Chun, Automatic musical pat-
tern feature extraction using convolutional neural net-
work, in Proc. Int. Conf. Data Mining and Applications,
2010.

[3] H. Lee, P. Pham, Y. Largman, and A. Ng, Unsupervised
Feature Learning for Audio Classification Using Convo-
lutional Deep Belief Networks, in Advances in Neural In-
formation Processing Systems 22. 2009.

[4] S. Dieleman, P. Brakel, and B. Schrauwen, Audio-based
Music Classification with a Pretrained Convolutional
Network, in Proceedings of the 12th International Con-
ference on Music Information Retrieval (ISMIR), 2011

[5] S. Dielman, B. Schrauwen, "End to End Deep Learn-
ing for Music Audio,” IEEE International conference on
Acoustic, Speech and Signal Processing, 2014

[6] S. Oramas, O. Nieto, F. Barbieri, X. Serra, ”Multi-label
Music Genre Classification from Audio, Text and Images

Using Deep Features”, https://arxiv.org/abs/1707.
04916

[7] S. Oramas, L. Espinosa-Anke, A. Lawlor, et al. ”Explor-
ing customer reviews for music genre classification and
evolutionary studies,” In ISMIR, 2016

[8] M. Defferrad, k. Benzi, P. Vandergheynst, X. Bresson,
"FMA: A Dataset for Music Analysis”, online: https:
//arxiv.org/abs/1612.01840

[9] Li T.L.H., Chan A.B. (2011) Genre Classification and
the Invariance of MFCC Features to Key and Tempo.
In: Lee KT., Tsai WH., Liao HY.M., Chen T., Hsieh
JW., Tseng CC. (eds) Advances in Multimedia Model-
ing. MMM 2011. Lecture Notes in Computer Science, vol
6523. Springer, Berlin, Heidelberg

[10] R. Ajoodha, R. Klein and B. Rosman, ”Single-labelled
music genre classification using content-based features,”
2015 Pattern Recognition Association of South Africa
and Robotics and Mechatronics International Conference
(PRASA-RobMech), Port Elizabeth, 2015, pp. 66-71.
doi: 10.1109/RoboMech.2015.7359500

Enlarged CNN

xeunyyos 807 9'0 = Wodosq
wiouyeg
2

saJuasB g

98T

vZol

um!mﬂ \\
> ity [—
PZOLXLX]

T ZLEXpXp

