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Abstract

Medical decision making is delegated almost entirely to
the experience of physicians, leading to inconsistency and
variability in practice. Our group has developed systems
to provide both automated clinical decision support and
patient progression predictions through feed-forward and
recurrent neural network models. Given a patient’s cur-
rent status based on information in the EHR system, we
accurately predict what happens next to the patient in the
next 24 hours. We showcase two models, one to replace
existing human derived order sets, and another to pro-
vide general patient timeline prediction. Our feed-forward
model (AUROC: 0.949) outperforms human authored or-
der sets (AUROC: 0.723) in predicting recommendable
clinical orders for physicians in 24 hours. Qur recurrent
neural network model (AUROC: 0.907) performed better
than a baseline model based on recommending the top
25 events (AUROC: 0.753) in making patient progression
predictions.

1 Introduction and Related Work

Despite the rapid and widely successful incorporation of
data-driven decisions into a plethora of different indus-
tries, when it comes to healthcare, much of high qual-
ity practice and decision making is still dependent almost
entirely upon the experience and knowledge of a single
physician. Consistency and variability plague much of the
current practice. We see this manifested in a variety of
scenarios; for example, in one study, 25% of heart attack
patients had not been receiving the proper aspirin medi-
cation. Many clinical decisions in the hospital lack
evidence-based support, due in part to the difficulty of
performing randomized controlled patient experiments, as
well as high variability in compliance to evidence-based
guidelines, ranging widely from 20-80% [1]. Moreover,
only about 11% of recommendation guidelines are backed
by high quality evidence. Thus, the progressively growing
amount of literature and instructions required to make
appropriate medical decisions is left to the anecdotal and
individual experience of physicians [2]. There is simply a
lack of knowledge and ability to keep up with the grow-
ing amount of skill, information, and communication re-
quired to help and heal people most effectively [3]. Re-

cent policies in the United States such as the HiTech act
(2009) and Medicare Access and CHIP Reauthorization
Act of 2015 have resulted in the widespread adoption of
electronic health records (EHRs) in over 80% of hospi-
tals [4,5]. The opportunity to feed this information
into a learning health system is a promising and
potentially life-saving way to form data-driven de-
cisions to support current clinical practice.

Currently, one form of clinical decision support al-
ready implemented within hospital systems involves hu-
man authored order sets. When ordering clinical items
for a patient in the hospital, clinicians can search for
and choose preformed order sets for common conditions.
These order sets are manually developed by clinical com-
mittees, a time consuming and unscalable process. Exist-
ing literature has shown the ability of probabilistic topic
models modeled off of the “Netflix” and “Amazon” recom-
mender algorithms, to outperform preformed order sets in
terms of suggestions for doctors in precision, recall, and f1
scores [6]. These methods are not only more accurate than
current guidelines, they are also vastly more scalable than
manually creating thousands of custom order sets. Recent
developments in computing power and the large amount
of clinical data available is the perfect setting for artifi-
cial intelligence algorithms, like deep neural networks, to
provide meaningful and accurate predictions. There has
already been great success in applying such tools to tasks
such as medical image segmentation and predicting diag-
noses, readmission, length of stay, and death [7-9]. Pre-
vious studies have used deep-learning models for decision
making in healthcare and have shown that deep neural
networks perform better than shallower machine learning
architectures [10]. Here, we train, develop, and test a set
of neural networks to predict clinically meaningful order
sets for automated clinical order decision support and pa-
tient progression over time.

Our neural network models use patient-level features
from the electronic health record (EHR) as inputs
(Figure 1). We showcase two such models, ClinicNet and
ClinicLSTM. ClinicNet is a feed-forward neural network
trained predict which of the 1,452 clinical items that are in
existing order sets (e.g a medication) a patient will receive
in the next 24 hours. ClinicNet significantly outperforms
currently used human authored order sets on this task
(precision: 0.411 vs 0.208, recall: 0.612 vs 0.476, AU-



ROC: 0.949 vs 0.723). ClinicLSTM is a recurrent neural
network using LSTM units to predict which of 2,994 pa-
tient progression events (e.g admitted to ICU, seen by a
cardiologist, etc.) a given patient will experience in the
next 24 hours. We find that the ClinicLSTM can predict
these events quite well with a precision of 0.366, recall
of 0.318 and AUROC of 0.907.

Inputs: Feature matrix capturing the patient context
within the hospital. We had over 7,500 features including
demographic, lab, treatment, medical history, diagnosis,
etc. every time an item is ordered for a patient, which
attempts to capture the patient status (all information
available in the EHR). Outputs: A binary response vector
of 1,452 clinical items ordered in the next 24 hours (Clinic-
Net) or a binary response vector of 2,994 different possible
progression events that could occur in the next 24 hours
(ClinicLSTM).
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Figure 1: Clinic Recommender Process Diagram

2 Dataset and Features

Data was extracted from Stanford Medicine Research
Data Repository (STARR) with Institutional Re-
view Board (IRB) and hospital approval from Stanford
HealthRex Laboratory [11]. In total, the data used for
this project spans from 2008-2014 and includes 2.2M pa-
tient encounters and 45K distinct clinical items. Clinical
items consist of 10,000 medications, 1,600 lab tests, 1,200
images, and 1,000 nurse orders. All medications were
grouped according to RxNorm mappings to administra-
tion route and active ingredients [12]. Other data elements
included demographics, ICD9 diagnoses codes, medical
team visits, stays in the ICU, admission, discharge sta-
tus etc. Pre-processing was done to allow each patient to
be modeled as a timeline of clinical item events at discrete
time points. Clinical items were removed based on the
80/20 power law distribution, such that any items with less
than 256 orders were removed. This allowed for greater
computational efficiency at the sacrifice of only 2% of
items ordered. Data processing was further performed us-
ing a pipeline developed by the Stanford HealthRex Lab-
oratory for building feature matrices from STARR data.
We modified and optimized the code to improve its run-
time and to narrow down the features in the dataset. Ulti-
mately this resulted in a feature matrix consisting of over
7,500 columns, with corresponding response vectors con-
sisting of 1,452 recommendable clinical items (ClinicNet)
or 2,994 patient timeline events (ClinicLSTM). ClinicNet
trained on 750,000 rows split into 92/4/4 train/dev/test

split with events from the human authored order sets split
randomly between the dev and test, and ClinicLSTM was
trained on 28,859 distinct 48 hour patient sequences and
used a 90/5/5 train/dev/test split.

3 Methods

3.1 Feed-Forward Model - ClinicNet

A deep neural network was trained to automate order rec-
ommendations by predicting which clinical items a patient
would receive in the next 24 hours. This is a multi-label
prediction problem that lends itself well to a feed-forward
neural network where the output layer contains sigmoid
activation functions that produce a 1,452 x 1 dimensional
output, corresponding to probabilities that a patient will
receive each of the clinical items. The inputs included
over 7,648 features pertaining to patient demographics and
past clinical item orders and lab test results. A weighted
cross-entropy loss function (1) was used during training to
increase the penalty associated with false negative predic-
tions. This was necessary as the large majority of patients
only receive a small proportion of the total number of clini-
cal items available, which causes the dataset to have highly
unbalanced classes.

— 1/mey(i)log(g}(i)) +(1- y(i))log(l - ﬁ(i)) (1)

Hyperparameters including the learning rate, dropout
rate, number of layers, number of neurons per layer, and
the weight in the loss function were tuned using a coarse-
to-fine approach (Table 1). The development and test sets
were created such that they only included instances where
an order set was used. This enables us to directly compare
the performance of ClinicNet against the existing recom-
mendation system while also ensuring that the distribu-
tion of the development and test sets match real-world
scenarios in which an order set is used. After testing nu-
merous models on a development set, it was determined
that the best performing model had five hidden layers with
500, 475, 450, 425, and 400 neurons, respectively (Figure
2).
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3.2 Recurrent Model - ClinicLSTM

A recurrent neural network was trained to predict patient
progression in the next 24 hours (ClinicLSTM) using a pa-
tient’s corresponding medical history extracted from EHR.
Each patient in the hospital will often experience many
patient progression events in a given 24-hour time period,
making this a multi-label prediction problem. To format
the input in a manner suitable for an RNN, we grouped
the data by patient encounter, resulting in a timeline of
events for each patient in the database along with the
9,290 features associated with the patient (e.g prescribed
medications, demographics, lab test results, etc.) at each
time point. Patient timelines were then split into 28,859
distinct 48-hour segments. We randomly selected the 48-
hour time segments of 90% of the patients to place into the
training set, 5% into the development set, and 5% into the
test set. Hyperparameters including learning rate, num-
ber of layers, number of hidden units per LSTM block,
and the positive weight in the loss function were tuned
using a coarse-to-find approach (Table 1).

ClinicLSTM uses LSTM blocks followed by a dense out-
put layer with a sigmoid activation function after each
time-point (Figure 3). The model uses a weighted cross
entropy loss function and was trained for 5 epochs (1).
After each time-point in a patient’s timeline, ClinicLSTM
outputs a 2,994 x 1 dimensional vector, corresponding to
probabilities that a patient will experience each of the pro-
gression events in the next 24 hours.
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Figure 3: ClinicLSTM Architecture
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ClinicNet | ClinicLSTM
Layers 5 1
Hidden Units 500,475
per Layer/Cell | 450,425,400 800
Learning Rate oe-3 le-3
Dropout Rate 0.05 0
Positive Weight 6 5

Table 1: ClinicNet and ClinicLSTM Hyperparameters

4 Results

4.1 ClinicNet Model Results

The ClinicNet feed-forward model outperformed the order
sets based on precision, recall, and AUROC.

Model Precision | Recall | F1 Score | AUROC
ClinicNet 0.411 0.612 0.492 0.949
Order Set 0.208 0.476 0.289 0.723

Table 2: ClinicNet and Order Set Performance

Perhaps most noticeable is ClinicNet’s precision score
compared to the order sets, indicating that the recommen-
dations the model produced could potentially be treated
with much higher confidence by a medical professional.
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Figure 5: Clinical Item P-R Curve

Furthermore, when comparing on a per clinical item ba-
sis, we see that ClinicNet outperformed the Order Sets on
81.7% of the clinical items. The median AUROC improve-
ment was 0.12.
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Figure 6: AUROC Difference by Clinical Item

4.2 ClinicLSTM Model Results

We compared the ClinicLSTM prediction results to those
of a "Majority" patient progression model. For each
time-step in a given patient’s timeline, the "Majority"
model predicts the 25 (median number of events in the
next 24 hours over dataset) progression events that have
occurred most often in the entire training set. We find
that ClinicLSTM outperforms the "Majority" model in
both precision, Fl-score, and AUROC, while falling short
in recall.

Model Precision | Recall | F1 Score | AUROC
ClinicLSTM 0.366 0.318 0.340 0.907
Majority 0.140 0.535 0.221 0.723

Table 3: ClinicLSTM and "Majority" Performance
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Figure 7: Patient Progression ROC Curve

5 Discussion

Our model provides effective clinical decision support for
physicians in a scalable and data-driven manner. Current
methods for curating order sets are time consuming, un-
scalable, and not specific to a given patient. By leveraging
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Figure 8: Patient Progression P-R Curve

data from the EHR, we demonstrate how deep learning can
be used to improve upon this current standard of care.

ClinicNet outperforms existing human-derived order
sets as well as other previous models in the literature at
predicting what clinical items a physician should order in
the next 24 hours. Obtaining high quality order sets can
help physicians more efficiently and accurately identify the
best clinical items that should be ordered for a patient
under their care. In its current state, ClinicNet produces
1,452 clinical item predictions, however, this number could
be extended to include any number of desired items.

Further analysis on our subclasses shows that our Clin-
icNet performs best on recommending nabumetone, amino
acids, elastase for stool, acetaminophen-hydrocodone, and
albumin with creatinine. However, we perform worse
than human authored order sets on consults to nephrology
transplants, insulin fasting, testosterone, EC4, and multi-
vitamin preparation-zinc gluconate. One potential reason
for this is the smaller set of data that corresponds to hu-
man authored order sets that we had (60,000, about 5%
of the total dataset), leading to higher bias when training.
In addition, it is possible that the top five recommended
items are not widely included in today’s order sets. Re-
gardless, our model outperforms on over 80% of the clinical
items in a scalable and accurate manner.

By transforming the EHR data into patient timelines,
we are also able to predict general medical events, or pa-
tient progression, using our ClinicLSTM model. Clini-
cLSTM was able to beat a "Majority" model in precision,
F1-score and AUROC, demonstrating the ability of Clini-
cLLSTM to learn from a patient’s medical history. However,
ClinicLSTM likely suffered from a lack of enough training
data and further work on ClinicLSTM will be needed to
provide medical professionals with even more accurate and
valuable insights into the future path of a given patient
through the hospital system.

The success of these models demonstrate the ability of
our deep neural networks to understand the patient con-
text. The implications include a scalable and accurate ap-
proach to recommending clinical items, as well as predict-
ing patient progression within the hospital. Ultimately,
these can help support and guide more effective, evidence-
based, and compliant practice.



6 Future Work

As we have demonstrated the efficacy of our clinical deci-
sion support model, our future work will include beginning
the process for implementing such a system into the clin-
ical flow as well as making further improvements to our
system. For instance, while ClinicLSTM outperformed the
"Majority" model in precision, F1-score, and AUROC, it
did not fare as well on recall. There are a number of ad-
justments that can be made that will likely improve model
performance. First, after generating patient timelines and
splitting each timeline into distinct 48-hour pieces, we were
left with only 28,859 input sequences. We expect that
obtaining more input sequences from EHR will improve
the ability of ClinicLSTM to predict patient progression
events. Second, adding an attention mechanism to bet-
ter capture prior a patient’s medical history may improve
model performance. For our ClinicNet, we hope to imple-
ment time-aware attention models, tune hyperparameters
for longer periods of time, and collect more data for train-
ing.

In addition to the EHR data used in training ClinicNet
and ClinicL.STM, there are a wealth of clinical notes writ-
ten by doctors and nurses pertaining to patient health that
may provide insights into future clinical orders and patient
progression. Generating embeddings from these notes to
be used as input to ClinicNet and ClinicLSTM has the po-
tential to significantly improve the performances of both
models.

Another task of interest for our group includes looking
at subsets of patients, such as those in the ICU, and seeing
if we can provide more accurate, robust, and reliable de-
cision support based on existing medical knowledge when
constructing features and response vectors for a more spe-
cific task.

7 Conclusion

The current status quo clinical order sets, authored by
clinicians, is a largely ineffective, unscalable system for
supporting clinical decision making. We developed a deep
neural network based model, ClinicNet, that outperformed
this system by all metrics. Furthermore, we constructed
an LSTM-based recurrent neural network model, called
ClinicLSTM, which could predict patient progression out-
comes. These models have the potential to provide in-
formation that could further inform physicians in their
clinical decision-making progress, and save lives. All con-
sidered, our work shows the effectiveness of deep learning
models in capturing patient context and predicting future
events and clinical orders, as well as demonstrates the po-
tential of such models to support the clinical decision mak-
ing process.
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