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1 Introduction

Breast cancer accounts for over 25% of cancer diagnoses
and 15% of cancer-related deaths in women.[1] Ten per-
cent of women with breast cancer have a family history of
the disease; women with one premenopausal first-degree
relative with breast cancer are at 3.3-fold greater risk
than women without a family history, demonstrating
that there is a significant genetic contribution to breast
cancer risk. To identify genetic factors associated with
breast cancer, early studies employed linkage analysis and
positional cloning in families with a familial history of
breast cancer to discover highly penetrant susceptibility
genes such as BRCA1&2.[2] Although these initial studies
could explain about 20% of the familial risk of breast
cancer,[3] they provided little insight into the role of
genetics in nonfamilial breast cancer.

More recently, genome-wide association studies (GWAS)
have identified over 80 loci significantly associated with
sporadic breast cancer. However, these variants collec-
tively only explain 16% of breast cancer heritability.[4]
The inability of GWAS to identify a greater proportion
of the genetic risk stems from many factors, including
genotyping platform limitations in interrogating rare vari-
ation (primarily due to the running of several thousand to
several million t-tests simultaneously). This is in contrast
with the current hypothesis of genetic architecture that
posits many gene variants acting in tandem to produce
a phenotypic trait, each with small effect size.[5] The
GWAS study design is also plagued by confoundedness,
despite the development of many sophisticated statistical
techniques to deal with complicated interactions. Simple
prediction and correlation setups in breast cancer studies
fail to account for this confoundedness (gene expression
results in cancerous growth and cancerous growth impacts
gene expression).

Instrumental variables (IV) have proven to be an adept
statistical method for addressing these issues of confound-
edness. As shown in Figure 1, IV uses an exogenous
instrument z to identify direct causal relationships be-
tween some policy variable p on outcome y (a relationship
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confounded by latent effects €). In the case of genetics
studies, Mendelian randomization of genetic variants
offers a promising instrument for estimating causal effects
of gene expression on cellular phenotype, in this case
if the cell is cancerous or not.[6] In this manner, it is
possible to identify low-signal, rare variants that would
typically not appear in GWAS analyses, thus providing
a more comprehensive mapping of the transciptome of a
cell to carcinogenesis.

Traditional IV experimental designs suffer from the lim-
itation that they require a strong prior understanding of
the data generating process (DGP), and are limited in
accounting for complex interactions between covariates.
Neural networks offer a solution to this limitation, due
to their ability to model complicated interactions between
genes that are both near and distal.[7] This project uses
the DeeplV framework to characterize the causal effect of
gene expression on carcinogenesis in breast cancer using
random, simple nucleotide variants (SNVs).

2 Algorithm

2.1 Overview

We implement the method described in “Deep IV: A
Flexible Approach for Counterfactual Prediction” to
identify the effect of a policy variable p on outcome y in
the presence of confoundedness.[8] Instrumental variables
(IV) are a well-developed tool for remedying endogeneity,
but require a strong prior understanding of the data
generating process and are not well equipped to deal with
a large number of covariates. Deep IV promises to marry
the best qualities of DNNs and IV, and we believe GWAS
are a prime use case.

To perform IV analysis one needs to find an exogenous
variable that affects the outcome variable only through
the endogenous covariate of interest. More specifically,
the instrument z must be conditionally independent of
the error (Figure 1).



Figure 1: Generalized Deep IV

Traditional IV can be estimated through a procedure
called two-stage least squares (2SLS): in the first stage
you regress your endogenous variable of interest, p, on
the exogenous instrument, z, to create a predicted p
constructed only with the exogenous variation of z. In the
second stage, you regress your outcome variable, y, on the
predicted p from the first stage.! To adapt this procedure
for the DeeplV method, we replace the two-stage least
squares with two-stage multilayer perceptrons. We call
the first stage our policy network and the second our
response network.

3 Simulation

3.1 Motivation and Design

As a proof-of-concept, we evaluate our approach on simu-
lated data, testing DeepIV’s ability to recover an underly-
ing causal relationship in a low-dimensional domain. We
compared our DeeplV architecture to a single-stage feed-
forward network with the same architecture as our DeepIV
response stage.

3.2 Simulated Data

Our simulation models a DGP similar to that described
in Section 2. For ease of explanation, we ground our sim-
ulation in a typical real-world IV application: estimating
the effect of price on sales of some product (say, hotel
bookings). We begin by assuming seven customer types,
s € {1,...,7} which each exhibit different levels of price
sensitivity. Customer price sensitivity varies according to
a complex non-linear function of time.

Y = 2((t — 5)*/600 + exp[ — 4(t — 5)*] +¢/10 — 2)
t ~ unif(0, 10)

Prices are a function of observed variable ¢ and some in-
strument z, on the basis that the hotel chooses their price

LChapter 4 of Angrist and Pischke’s Mostly Harmless Economet-
rics: an Empiricist’s Companion[9] provides a good introduction to
instrumental variables.

to move with average price sensitivity. In the hotel ex-
ample, the high demand resulting from some unobserved
confounding variable (e.g. a nearby conference) breaks
the conditional independence between our policy variable
p (price) and the latent effects e. We model this by gen-
erating our errors e with parameter p that denotes the
correlation between p and e; in other words, it reflects
the extent of endogeneity in our population model. Our
outcome variable y (sales) is then generated as:

y =100+ (100 + p)suy —2p+e
p=25+ (2 +3); +v
z,v ~N(0,1)
e~ N(pv,1—p?)

The causal relationship we wish to uncover is
h(t,s,p) = (10 + p)sy»y — 2p, but the correlation be-
tween the error e and p in our population model violates
the unconfoundedness assumption necessary for causal
interpretation.

Since we have our ground truth causal relationship, we
evaluate our model by first generating features [¢, s, p], but
then change p to a fixed grid of price values p’. This allows
us to compare our predicted sales, h against the ground
truth h.

3.3 Model Architectures

The policy and response networks in our simulations
below have three hidden layers with 128, 64, and 32
hidden units respectively. The policy network takes in the
exogenous z and control variables z as input to predict
p using tanh activation functions for each layer and a
Mixture of Gaussian output with 10 components. The
predicted p from the policy network and x are then fed
into the response network to yield predictions y. The
response network uses ReLU activation functions for the
three hidden layers and linear activation for the output.

Both networks use Adam Optimization with learning rate
= 0.001, B; = 0.9, B2 = 0.999, and ¢ = le — 08. For
training we use L2 weight decay with penalty parameter
0.001, a dropout rate of min(1000/(1000 + n);0.5), (1.5 x
10%/n) epochs, and batch size 100.

3.4 Results

Figures 2 and 3 summarize the results of our simulations
for two different n, giving out-of-sample MSE as we vary
the level of endogeneity in our DGP. Each model was fit
on 10 random samples from the DGP for each p and sam-
ple size. The performance of the DeeplV architecture was



Figure 2: Causal Performance (n=1000)
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Figure 3: Causal Performance (n=10,000)
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largely unaffected by the increase in p, reflecting the re-
silience of this architecture to confounding latent variables.
On the other hand, the Feed-Forward Network did a poor
job of recovering the true counterfactual function we were
testing with this simulation.?

4 Breast Cancer

4.1 Data

We use whole-genome and whole-transcriptome data from
the Genotype-Tissue Expression (GTEx) project [10] and
The Cancer Genome Atlas (TCGA)[11]. The GTEx
dataset includes 11,688 samples that are non-cancerous
with matched whole-genome and whole-transcriptome
data. The TCGA dataset includes 978 breast cancer sam-
ples with matched whole-genome and whole transcriptome
data.

Due to the highly unique property of genetic mutations,
the instrument space would be too large if genetic
mutations were categorized by base pair loci for each
unique mutation (i.e. a specific mutation typically only

2Note that this model would have performed well if we had been
testing its ability to estimate h(t,s,p) + Ele|p], i.e. if we were not
trying to make counterfactual predictions.

occurs in a single person in the dataset). To address
this, we employed the degree of mutation of a gene
for an individual as our instrumental variable, which is
defined as the number of mutations an individual had
on a specific gene, measured for all sequenced genes.
Transcriptome data was defined as abundance of an
mRNA transcript, measured by transcripts per million
transcripts (concentration).

There are 13,980 genes and 53,196 transcripts measured in
our combined data. To make network training computa-
tionally tractable, we reduced the transcript space to 2,344
transcripts of genes that were utilized in a previous tran-
scriptome analysis project in breast cancer carcinogenesis.
The resulting instrument dataset was sparse, with each
healthy individual having an average of 3 mutations and
each cancerous individual having an average of 77.34 mu-
tations. However, this degree of sparsity is characteristic
of large SNP mutation datasets and is not expected to
negatively impact the performance of our model. We used
a 80:15:15 split for train, validate, and test (respectively),
resulting in a train set with n = 8866, and validation and
test sets with n = 1900.

4.2 Network Architecture

For the first stage of our DeeplV framework we predict
2,344 gene expression levels from genetic variants, normal-
izing observed gene expression for each mRNA. We exper-
imented with a variety of model architectures (number of
layers and nodes per layer in a Feed-Forward Network),
and subsequently used a grid search over relevant hyper-
parameters to optimize our performance on the validation
set. A sample of our candidate models for the first stage
is given in Table 1; our chosen architecture was three fully
connected layers with 200 hidden units, tanh activation
functions, a learning rate of le-3, and a hefty dropout rate
of 50%. We used Adam optimization with parameters as
specified in the seminal paper[12] and a batch size of one
hundred.

The first stage reached its minimum validation error
within a few epochs. Even with extensive regularization
and a relatively simple architecture our validation error
quickly began to climb, reflecting the fact that our data
is relatively wide. Below we show the training and vali-
dation MSE for five model specifications. We characterize
each model by: layers, learning rate, L2, dropout rate,
activation function.

Using our preferred model for the first stage, we feed the
training data through the trained first stage, and use these
predicted gene expression levels as the training data for the
second stage.

In designing the second stage we again explored a variety
of architectures and compared validation error over a grid
of hyperparameters. Since our outcome is now binary,



Table 1: First Stage Models

Model Train Validation
[100,100,100], 1e-3, 0, 0, tanh 974 .976

[200, 100, 50], 1e-3, 0, 0.4, tanh .806 1.085
[200, 200, 200], 1e-3, 0, 0.5, tanh* .983 975

[200, 200, 200], 1e-3, 0, 0, tanh 974 .976

[200, 200, 200], le-3, le-4, 0, tanh  1.002 .993

we use a sigmoid output and binary cross-entropy loss.
A grid search over our hyperparameters yielded a model
with a learning rate of 3e-5, dropout rate of 0.1, and no
L2 regularization. Again, we used Adam optimization and
a batch size of one hundred. The training and validation
binary cross-entropy loss for a sample of five candidate
specifications can be seen below.

Table 2: First Stage Models

Model Train Validation
[50, 50], le-5, 0, 0, sigmoid .019 .019
[100, 50], 3e-5, 1e-4, 0, tanh .036 .038
[100, 50], 3e-5, 0, 0.1, tanh* .013 .014
[100, 50], 1e-5, 0, 0, tanh .014 .017
[100, 50, 10], le-5, 0, 0, sigmoid  .044 .046

4.3 Results

Using our preferred models for both the first and second
stage we achieve a misclassification rate of 0.5 percent; the
ROC curve (Figure 4) for our final model confirms that we
do a near-perfect job at predicting whether or not a cell
is cancerous as we vary our classification threshold (our

default is 50%).

Figure 4: ROC Curve for Final Predictions
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While we are pleased with the low error rate we were able
to achieve with the DeeplV method, the true compara-
tive advantage comes not in predictive accuracy, but in

interpretability. By removing the confounded relationship
between gene expression and cancer in the first stage, the
second stage can be understood in a causal framework.
Running a set of gene expression levels through the sec-
ond stage does not yield the predicted outcome (i.e. pre-
dictions in the presence of endogeneity), but rather the
outcome caused by the mRNA expression.

We can now exploit the second stage to simulate controlled
lab experiments. To rigorously understand how gene ex-
pression levels influence cancer, scientists have been forced
to carefully (and expensively) underexpress or overexpress
genes in a lab. This is the only scientific way to understand
the relationship since any observational data occurring in
nature is plagued by the endogenous relationship between
the variable of interest and the outcome. However, the
trained second stage of the DeepIV model simulates lab
experiments since it has insured unconfoundedness. We
can thus choose whatever gene expression is of interest to
us, run it through the second stage, and understand how
those particular gene expression levels cause cancer.

To understand and discover the causal effect of gene ex-
pression on cancer, we generated 100,000 observations
from a multivariate Gaussian distribution for the 2,344 dif-
ferent mRNA, using our training data to estimate the co-
variance matrix. We then fed this data through the second
stage to yield causal outcomes. Because our second stage
network captures the true causal relationship irrespective
of endogeneity (Section 3), we could then use classical sta-
tistical learning techniques to uncover (and represent) the
causal relationships between gene expressions and carcino-
genesis using our simulated data.

We first ran an L1-penalized logistic regression to yield a
sparse vector of mRNAs with the most significant causal
impact on carcinogensis, choosing the penalty parameter
by 5-fold cross-validation. The largest 10 coefficients (in
absolute value) are given in Table 3. We also trained a
classification decision tree with an information gain cri-
terion to model interactions between mRNAs, 4 levels of
which are shown in Figure 5.

These simulation experiments yielded a myriad of new
candidate genes involved in carcinogenesis that have not
been fully characterized, and in some cases explored, for
breast cancer. The most significant gene was PSMGI1,
which was identified as having the largest discriminating
ability between healthy and cancerous cells by the decision
tree, being used as the classifier in both of the first two
splits, as well as having the second largest coefficient (in
absolute terms) in the logistic regression. Both analyses
indicated that underexpression of PSMGI1 increases
carcinogenesis; this aligns well with PSMG1s role as a
chaperone protein in the assembly of the 20S proteasome,
which is essential in the degradation of mutated and
misfolded proteins[13].

The decision tree also identified that overexpression of the



Table 3: Top Lasso Coefficients

mRNA ID Coefficient
ENSG00000121621 -2.253
ENSG00000183527 -1.381
ENSG00000100842 1.263
ENSG00000141873 -1.148
ENSG00000162738  0.937
ENSG00000155330 -0.934
ENSG00000197557  -0.926
ENSG00000128581  -0.888
ENSG00000116704 -0.767
ENSG00000213463 -0.683

TRIM29 protein, a transcriptional regulatory factor in-
volved in carcinogenesis [14], and underexpression of the
PERP protein, a regulator of the p53 pathway (a tumor
suppressor pathway)[15], increase carcinogenesis, which
agrees with previous characterization of these proteins
function as described in the literature. Although PSMG1,
TRIM29, and PERP have all been investigated for car-
cinogenesis involvement prior to this project, none of these
proteins have been robustly characterized in breast cancer
specifically, presenting an exciting avenue for future inves-
tigations into breast cancer carcinogenesis and therapeutic
targets. The logistic regression both reiterated the signif-
icance of the PSMG1 protein, as well as identified nine
new candidate proteins for carcinogenesis regulation. In
particular, the SLC39A3[16], VANGL2[17], c160rf87[18],
and SLC35D1[19] proteins have never been investigated
in breast cancer carcinogenesis, with their mechanisms
for carcinogenesis still being unknown. Further analysis
of these proteins using decision tree analysis will eluci-
date the associated carcinogenesis-mediating interactions
and present potential routes for further characterization
of breast cancer carcinogenesis.

Figure 5: Truncated Decision Tree
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5 Future Work

Although we discovered a number of transcripts that are
influential in mediating carcinogenesis in breast tissue as
well as quantifying their causative effect on carcinogenesis,
we cannot a priori validate our findings without some pos-
itive control or wet-lab experiments. This would consist of
manual up- and down-regulation of the identified genes to
reduce the abundance of the corresponding transcripts fol-
lowed by monitoring for carcinogenesis behavior (i.e. mea-
suring mutant p53 levels). Additionally, this study suffers
from batch effect, due to all healthy samples coming from
the GTEx dataset and all cancerous samples coming from
the TCGA dataset. In order to develop a more robust
model, we have partnered with Dr. Assimes of the Stan-
ford School of Medicine to work with NIH data that does
not exhibit batch effects, as well as increase the sample
size and utilize the complete transcriptome space.

6 Contributions

e Jack Andraka: data access and cleaning, biology lit-
erature review, hyperparameter tuning, interpreting
results

e Billy Ferguson: data cleaning, model architecture,
simulation, hyperparameter tuning

e Charlie Walker: data cleaning, model architecture,
simulation, hyperparameter tuning

7 Code

The code for this project is available at https://github.
com/cwalker4/deepiv-gwas.
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