Clickbait Article Detection Using Deep Learning:
These Results Will Shock You!

Kali Cornn
Department of Computer Science, Stanford University

1 INTRODUCTION

Social networking websites such as BuzzFeed often
utilize clickbait headlines and “teaser messages” in
order to lure users to click and read an article [1].
Therefore, clickbait is an effective method used by
content creators that draws users to websites.

While the article may not necessarily have false
information, the headline can be greatly exaggerated
and misleading. Such article can therefore spread
misinformation.

Examples of clickbait article titles:

* “Tesla CHARGES You For THIS??”

* “McDonald's Just Made a Stunning
Announcement That Will Completely Change
the Future of Fast Food”.

This project aims to solve the following problem:
given an article headline or social media post, is it
considered “clickbait” or “non-clickbait™?

The best approach for this problem, as described in
this paper, was found to be a recurrent neural network
with GloVe embedding weights.

2 PREVIOUS WORK

Potthast et. al developed the first approach to
clickbait detection by utilizing such machine learning
methods as logistic regression, Naive Bayes, and
Random Forests on Twitter data. However, the features
used in their models, such as character and word n-
grams, were tediously created by hand [1].

Anand et. al utilized variants of a bidirectional
recurrent neural network with distributed word
embeddings to detect clickbait. Models used were
RNN, LSTM, and GRU, with LSTM having the
highest accuracy overall [2]. However, little previous
work has utilized both convolutional neural networks
and recurrent neural networks in analysis of clickbait.

3 DATASET

3.1 Dataset Collection and Overview

A custom dataset of 11,504 headlines was used for
analysis. There was approximately a 50%-50% split
between clickbait (5,751) and non-clickbait (5,753).

9,522 headlines were from The Clickbait Challenge
dataset, a collection of social media posts that are pre-

classified as either clickbait or non-clickbait, based on
crowd-sourced user data [3].

1,982 headlines were scraped using a custom Python
screen from three Reddit subreddits
(/r/savedyouaclick, /r/news, /r/worldnews). These
headlines were classified as clickbait or non-clickbait
based on the subreddit they originated from
(/r/savedyouaclick was considered clickbait; /r/news
and /r/worldnews were considered non-clickbait).

4 UNIGRAM WORD CLOUDS

The WordCloud package was used on clickbait and
non-clickbait headlines as a method of data exploration
to determine the types of words that are frequently used
in clickbait headlines.

Knowso,Thing Make
Tﬁgmré
Wis]j% ewémen r

Yea Iz People

Figure 1: Top 20 words present in clickbait titles

m?n }y’(E,Ea r-F)O]JiCE
flrst W1]_]_

VldeoRussmpeop]el State

i
N e >/attcaacyk
?SleO n a l dban House

President
contlnue

Figure 2: Top 20 words present in non-clickbait titles

5 APPROACH AND RESULTS

Data were randomly split into train, development,
and test sets by using a 60%-20%-20% ratio.

All models were evaluated by looking at accuracy,
precision, recall, and F1-score on the test set.

5.1 Baseline Models

Baseline models used were Multinomial Naive Bayes
(MNB), Support Vector Machines (SVM), and
Random Forest Classifier (RFC).

All baseline models used Term Frequency-Inverse
Document Frequency (tf-idf) as features. To do so, the
input text was converted to a matrix of Tf-idf features
by using the TfidfVectorizer in the sklearn
feature_extraction package. Tf-idf weighs words
based on their frequency and importance within a
document: common words such as “the” are weighed
less and rarer terms are weighed more.

Multinomial Naive Bayes

A supervised learning method, multinomial Naive
Bayes is a common method, based on Bayes Theorem
used in NLP, particularly text classification. It relies
the assumption that features used for classification are
independent.

This classifier achieved 72.0% accuracy.

Confusion Matrix: Multinomial Naive Bayes
- 700

i'l

Figure 3: Confusion matrix for the output of the MNB
classifier

Support Vector Machines

This classifier aims to create an optimal hyperplane
that splits all data points into two perfectly separable
classes.

This was implemented using LinearSVC in the
sklearn svm package; LinearSVC allows for
flexibility in the choice of parameters and various loss
functions. The multi-class strategy used was ovr (one-
versus-rest), and used L2 penalty.

This classifier achieved 69.8% accuracy.

Confusion Matrix: SVM

- 800
- 700
600
500
400

Figure 4: Confusion matrix for the output of the SVM
classifier

Random Forest Classifier

Random forest classifiers create de-correlated trees
using a randomly selected set of features, often with
bootstrapping (sampling with replacement), and takes
the average of these trees.

This classifier used the gini criterion, 1000 trees
(n_estimators = 1000), a maximum of 3 features when
looking for a tree split (max_features = 3), and
bootstrapping.

This classifier achieved 72.1% accuracy, and also
had the highest precision, recall, and F1-scores of all
baseline models. However, this was at the expense of a
significantly slower training time.

Confusion Matrix: Random Forest

- 800
- 700
600
500
400

300

0 1

Figure 5: Confusion matrix for the output of the RFC
classifier

5.2 Neural Network Models

All neural network models used Global Vectors for
Word Representation (GloVe).

GloVe represents words as vectors, in which the
cosine similarity between two word vectors measures

the similarity of corresponding wods. 100-dimensional
word vectors trained on Gigaword and Wikipedia data
were used for the neural network models [4].

Adam optimization was used with a learning rate of
0.0005.

5.3 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) models apply
convolutional filters to inputs, followed by fully-
connected (dense) layers. While mainly used in
imaging, CNNs are also used for NLP tasks by
applying convolutional filters to documents
represented as matrices.

The CNN models for this project were created with
the Kkeras library.

Three models were created:

* (NN without GloVe embedding weights,

* CNN with GloVe embedding weights + 1
LSTM layer,

* (NN with GloVe embedding weights,

CNN with GloVe embedding weights

= a
2 -]
2 £ 3 s
- o < o e P
-} ! o) H -}
Figure 6: Architecture of CNN model, utilizing
embedding weights
Layers

¢ Input: Text was tokenized and padded to a
maximum length of 20.

* Embedding: The input was embedded into a
GloVe matrix.

¢ Convolution: 64 filters and a kernel size of 2
were used, with ReLU activation.

* Max Pooling: The size of the max pooling
windows was 2.

* Dropout: The dropout rate was 0.2.

* Dense: The output of convolution + max
pooling, after dropout, was fed through two
dense (fully-connected) layers. The first layer
(parameter units = 128) had ReLU activation
and the second layer (parameter units = 1) had
sigmoid activation due to the binary output
(classifying as clickbait or non-clickbait). L2
regularization with a 0.01 was also used.

The model was trained fairly quickly (6 epochs) and
used a batch size of 64. The binary cross entropy loss
function was used. This model achieved 72.9%
accuracy.

Two other CNN models were created, as briefly
described below, but they did not perform as well as
the above model.

CNN without GloVe embedding weights

Without the use of GloVe embedding weights, the
CNN had an accuracy of 63.5%, which is lower than
that of all other models, including the baseline models.

CNN with GloVe embedding weights and one LSTM
layer

This model used the same parameters for the
Convolution and Max Pooling layers as in the previous
model, with the addition of single long short-term
memory (LSTM) layer of 128 units and tanh
activation. This model was trained with 1 epoch and
used a batch size of 64. This model achieved 71.0%
accuracy.

Istm_1: LSTM

dense_1: Dense

convld_1: ConvlD

embedding_1_input: InputLayer
embedding_1: Embedding

max_poolingld_1: MaxPooling 1D

Figure 7: Architecture of CNN model, utilizing
embedding weights and one LSTM layer

5.4 Recurrent Neural Network (RNN)

Recurrent neural network (RNN) models utilize
“memory” to store information about inputs that have
been previously perceived in time. While training,
RNNs often suffer from the vanishing gradient
problem, which means that the gradients of the neural
network’s output can become very small, so even a
large change in a parameter can have a marginal effect
on the gradient. So, when the gradients are too small,
they are at risk of “vanishing.” This problem is
addressed by using LSTMs, which use gating
mechanisms to “remember” values over time to create
new hidden states, thereby improving gradient flow.

One RNN model was created with the keras library.
This model utilized GloVe embedding weights.

2: Dropout

Istm_1: LSTM
dropout_1: Dropout

Istm_2: LSTM
Istm_3: LSTM

dropout_3: Dropout

dense_1: Dense

o

embedding_1: Embedding

embedding_1_input: InputLayer

Figure 8: Architecture of RNN model, utilizing
embedding weights
Layers

¢ Input: Text was tokenized and padded to a
maximum length of 20.

* Embedding: The input was embedded into a
GloVe matrix.

* LSTM + Dropout: Three LSTM layers were
used, with a dropout layer in between each.
The LSTM layers had 256 units, 128 units, and
64 units, respectively. Dropout rate was 0.2.
Dropout was used to prevent the LSTM layers
from overfitting.

¢ Dense: The output was fed through a single
dense layer (parameter of units = 1) with
sigmoid activation.

This model was trained for 5 epochs and used a batch
size of 128. The binary cross entropy loss function was
used.

6 RESULTS

Model | Accuracy | Precision | Recall F1
MNB 0.720 0.721 0.720 | 0.719
SVM 0.698 0.700 0.698 | 0.698
REC 0.721 0.723 0.721 0.721
CNN 0.635 0.638 0.641 0.630
(wlo

embed)
CNN 0.729 0.731 0.728 | 0.723

(w/

embed)

CNN + 0.710 0.705 0.723 | 0.707

LSTM
RNN 0.738 0.723 0.770 | 0.742

Table 1: Results from all baseline and neural network

models

7 DISCUSSION

Baseline accuracy, from randomly guessing whether
a headline is clickbait or non-clickbait, can be
considered to be 50%. All models evaluated in section
6 performed above this baseline accuracy.

Overall, the RNN model performed the best, with an
accuracy of approximately 73.8%. Though typically
used for imaging-related tasks, the CNN model also

performed well: its precision of 73.1% was higher than
that of the RNN model.

Though this RNN model did not perform nearly as
well as did Anand et. al’s bidirectional model (98.19%
accuracy), the LSTM model in this project, like in
Anand et. al’s findings, was also the best-performing
model.

However, the higher accuracy of the RNN model was
at the expense of a longer training time than that of the
CNN models.

8 FUTURE WORK

The current neural network models could be
improved with further hyperparameter tunings. In
addition, 10-fold cross validation could be used to
maintain consistency among train, development, and
test datasets.

To further improve detection accuracy, a more
diverse dataset could be used, one that not only utilizes
headlines, but also other features of an article, such as
post text and the presence of images.

9 GITHUB REPO
https://github.com/kcornn/cs230-project

REFERENCES

[1] Potthast M., Kopsel S., Stein B., Hagen M. (2016) Clickbait
Detection. In: Ferro N. et al. (eds) Advances in Information
Retrieval. ECIR 2016. Lecture Notes in Computer Science,
vol 9626. Springer, Cham

[2] Anand, A., Chakraborty T., Park N.. (2016) We used neural
networks to detect clickbaits: You won’t believe what
happened next! CoRR,
http://arxiv.org/abs/1612.01340.

[3] Clickbait Challenge, 2017, www.clickbait-challenge.org/.

[4] Pennington, Jeffrey. “GloVe: Global Vectors for Word
Representation.” GloVe: Global Vectors for Word
Representation, nlp.stanford.edu/projects/glove/.

abs/1612.01340, 2016.

