Movie Recommendation System based on Metadata
and User Ratings

Yongshang Wu, Ziran Zhang and Jiaxi Chen
Department of Computer Science
Stanford University
{wuy, zirzhang, jiaxi}@stanford.edu

Abstract

Movie recommendation is a challenging but interesting problem, where data spar-
sity and cold start issues make prediction very hard. We proposed an AutoEncoder
based deep learning model as well as a embedding based score model to tackle the
movie recommendation problem given user ratings and movie metadata. Our Au-
toEncoder model reaches 0.496 on 72 metric and 74.3% prediction accuracy on
the test set.

1 Introduction

Movie recommendation is a interesting problem given the large amount of movies available and
users in need. A recommendation system is required to discover users’ latent preference over movies
by analyzing the existing (often a small fraction) ratings of users over movies. In this project, we
hope to build an end-to-end recommendation system that could predicts users potential ratings on
movies given given existing movie ratings and movie metadata.

2 Related Work

Collaborative Filtering (CF) [1] [2] is a popular and powerful technique employed by most rec-
ommendation systems. Traditional methods of CF like matrix factorization [3] with principal com-
ponent analysis (PCA) have been widely employed to tackle this problem. Neural network based
approach such as Neural Collaborative Filtering [4] is gaining more and more popularity with the
emerging and rising of deep learning.

Network embedding, such as node2vec [5], is another well-known method to represent relationship
of nodes in graphs.

But these work either focuses only on rating matrix or movie/user metadata, and it is often difficult
to combine the advantages of two methods and hard to be integrated into applications. In addition,
these techniques suffer from sparsity problem, also known as the cold start issue. It also takes lots
of efforts or even is impossible to incorporate any domain knowledge or side information.

In this project, we designed a AutoEncoder [6] based method which combines ratings and movie
metadata to tackle the recommendation task.

3 Dataset

The dataset we uses is obtained from *The Movie Dataset [7]. After preprocessing, we have 2,095
movies and 7,941 users with around 1 million ratings and each movie comes with metadata including
overviews, keywords and genres. So the input we end up with is a (2095, 7941)-shaped rating matrix

R and a (2095, 300)-shaped metadata matrix M obtained by averaging word vectors of textual
metadata.

4 Model

4.1 Denosing AutoEncoder Model

Figure 1 is the illustration of processing steps in the Denoising AutoEncoder (DAE) model.

1-In 2-Norm 3-Dense 4-Mask 5-Metadata 6-AutoEncoder 7-Out 8-Loss

4 0.5 0.5 0.5 0.5 06 0.12xB

? ? 0 0 0 0.3 ?

1 -1 -1 0 0 -0.1 0.1%xa

? ? 0 0 0 -0.2 ?

5 1 1 1 1 0.8 0.22xp
d

Figure 1: Denoising AutoEncoder model

First, given the input movie vector, we normalize the ratings to a [—1, 1] scale, which allows a tanh
activation output layer to output ratings at the same scale without additional post-processing.

Second, we densify the vector by filling unknown ratings with 0’s and the index of these missing
values needs to be recorded to inhibit the back-propagated unknown errors. No error should be
back-propagated for missing values since we don’t know the true “label” of them, while the error on
actual zero values are back-propagated normally.

Third, 30% of random known values are masked to 0 to enable the usage of Denoising AutoEncoder
loss function [8].

Next, the d-dimensional metadata m; of the j-th movie is appended to the vector. The consideration
for incorporating metadata of movies is that it may help alleviate “the cold start” problems when
there are very few users rating on particular movies. Adding the intrinsic side information of movies
may add some bias on the missing ratings as a basis start point. In our neural network implemen-
tation, such method could be applied by appending metadata’s vector representations to the original
input vectors. For baseline model, we apply the CBOW [9] technique by averaging up word vectors
of movie overviews, keywords and genres as the metadata and only apply the metadata at the input
level. Different metadata representations and applications at different layers could be also tried out
and compared.

In terms of the AutoEncoder, We first implement a shallow neural network with one hidden layer
to get a baseline model. The predicting task is achieved by performing a forward pass through our
neural network:

R, =g® (Wrz] gl (W[u [Ry,mj] + bm) T b[a]))

where gl!l, gl are non-linear activation function for different layers, W ¢ ReMXN ol €
R , Wi ¢ RM xnl] ,b?2l € RM are the weights and biases to be learnt in the network. For
baseline, we choose the activation function gl!! = ReLu, g¥ = tanh and the hidden layer size
nll = 750. More architecture details and choices carefully calibrated in section 5.

As mentioned before, we define the DAE loss function as

A % 2 5 2
Lows(RyRy)=a Y (Ry-Ry) +8 Y (Ry—Ry) +AIW
i€€(R.;)NM(R.;) i€E(R.;)\M(R.;)

@

where £(R.;) is the set of indices of existing values in R.; and M(R.;) is the set of indices of
masked values. The intuition behind the DAE loss function is that we want to encourage our model
to not only recovering the known values, but also predicting unknown values. Consider a model
which learns to simply output the original input vector (i.e. an identity function), the loss of this
model is O but is useless since it can not conduct any predicting. Without masking, it is highly likely
an AutoEncoder would learns the behavior of the example identity model.

4.2 Score Model

Inspired by word2vec [9], we came up with the Score Model, which learns denser representation
embeddings for movies and users, as illustrated in Figure 2.

m

T
o (miuj)

— U
J

Figure 2: ScoreModel with Neural Network

The Score Model is the focus of Ziran and Jiaxi’s joint project for CS224N, which will not be
discussed in detail here due to the page limit.

S Results and Analysis

5.1 Maetric

5.1.1 Coefficient of Determination

We use coefficient of determination (r2) [10] as the metric of evaluating our AutoEncoder model
instead of Root Mean Square Error (RMSE) used in our milestone. They are both metrics for
regression problems but it is hard to interpret the RMSE metric since it is just an unnormalized
error. The 72 metric is defined as follows:

_ 52
2 _q_ 2y €|2 3)
2 ly—1l
which lies in range [—1, 1] and indicates the percentage of improvement over a baseline which
simply output mean value of input values, as illustrated in Figure 3.

5.1.2 Prediction Accuracy

The movie recommendation task can be treated a binary classification problem: essentially we want
to do is predict whether to recommend a movie to a user (y = 1) or not (y = 0). This could be
achieved by applying a threshold (e.g. rating > 4) to the ground truth and predicted ratings. So a
natural metric of accuracy ACC could be adopted under the binary classification setting:

of Corrected Predictions
A= # of Predictions @)

-7

. @—@I;

of examples

Cumulative percent

Absolute Error

Figure 3: Coefficient of Determination Metric

5.2 Experiment Resutls

We randomly split the dataset into 80% : 20% training/dev set to do training, cross validation and
hyperparameter tuning. In all experiments, we run our models for 100 epochs, using AdamOptimizer
[11] with a learning rate of 10~3, a ly-regularization weight of 0.1, and a dropout rate of 0.8. For
details of all hyperparameters and our code implementation, please refer to the Github Repo'.

5.2.1 DAE Model Results

Figure 4 shows the results we get for different autoencoder architectures. We start with one 750-

0.5 -
— shallow

04} — pre-pca
— deep

03 metadata

0.2+

0.1}

L
0.0

—01 W
oalf

-0.3

Zb 4b 60 80 100
Num of Epoch

Figure 4: Experiment Results of DAE Model

neuron hidden layer without metadata. As we can see, the model overfits quickly and the 72 metric
on dev set gets stuck around 0.167 (the “shallow” line in Figure 4). The reason may be that we have
a very high dimensional input and output, which results in a huge amount of parameters and easily
overfits the training data.

To address the overfitting problem, we first try to reduce the dimension of input vector by doing
a principal component analysis on the input matrix, then apply the autoencoder to the compressed

"https://github.com/AndyYSWoo/cs230-MovieRecSys

vectors (the principal components) and then recover the output back to the original dimension space.
But this approach makes the performance even worse, with a 72 metric around —0.1 (the “pre-pca”
line)! The possible reasons are: 1) the model bias is enlarged by trying to recover the imprecise
compressed components; 2) the principal components for train/dev sets are different so using the
same transformation is probably a bad idea.

We then try decreasing the first hidden layer size from 750 to 50 and stack a second hidden layer
of size 100, followed by another hidden layer of size 50. This boosts the dev 72 metric to 0.418
(the “deep” line). The intuition behind this architecture is that by decreasing the size of first and
last hidden layer we could decrease the number of total parameters; by stacking three hidden layers
instead of having a single large layer, the model will be able to learn denser features of the movie
vector.

Lastly, by concatenating movie metadata to the input vector, the 2 is increased to 0.496.
5.2.2 Score Model

By trying out different combinations, we achieve the best result on the Score Model with 50-
dimensional embedding vector, 2 hidden layers, and 60 neurons in each hidden layer. The ex-
periment results is as shown in Table 1:

Table 1: Accuracy on different models

Model Accuracy
Score Model without neural network 62.9%
Score Model with neural network 70.9%
Score Model with neural network plus metadata | 71.1%
DAE Model 70.2%
DAE Model plus metadata 74.3%

We observe that even with a relatively shallow neural network with 2 hidden layers, the Score Model
still outperforms the one without hidden layers and the metadata has less effect on the performance
than DAE Model.

Due to the page limit, we will not discuss the results of Score Model here since it is the focus of the
CS224N joint project.

6 Conclusion and Future Work

In this project, we came up with and implemented two end-to-end deep learning based recommen-
dation system models, namely the Denoising AutoEncoder Model and the Score Model. We devoted
large amount of efforts to tackle the overfitting problem of the DAE model and learned a lot from
the process.

Our future work can be looking into the combination of traditional recommendation methods and
our model into some hierarchy statistical model. Another aspect of future work lies in different
ways of utilizing the textual metadata with recurrent neural networks and maybe image metadata
(e.g. posters or movie content frames) with convolutional networks.

Contribution

Yongshang Wu: Denosing AutoEncoder Model design and implementation, experiment manage-
ment, score model discussion, poster making and report writing.

Jiaxi Chen: Score Model design and implementation, experiments on Score Model, data preprocess-
ing, poster making and report writing.

Ziran Zhang: Research on related works, investigation on state of the art, discussion of dataset and
algorithm, poster making and report writing.

Shared project
Jiaxi and Ziran share this project with CS224N, where they get the inspiration of the Score Model
from and pay most attention to.

References

[1] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and evaluating
choices in a virtual community of use. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 194-201. ACM Press/Addison-Wesley Publishing Co.,
1995.

[2] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R Gordon, and

John Riedl. Grouplens: applying collaborative filtering to usenet news. Communications of
the ACM, 40(3):77-87, 1997.

[3] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8), 2009.

[4] Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide
Web, pages 173—182. International World Wide Web Conferences Steering Committee, 2017.

[5] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855-864. ACM, 2016.

[6] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of
ICML Workshop on Unsupervised and Transfer Learning, pages 3749, 2012.

[7] Martin E Fabien D, Rounak B. The movie dataset. https://www.kaggle.com/
rounakbanik/the-movies—dataset, 2017.

[8] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the 25th inter-
national conference on Machine learning, pages 1096-1103. ACM, 2008.

[9] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[10] Calyampudi Radhakrishna Rao, Calyampudi Radhakrishna Rao, Mathematischer Statistiker,
Calyampudi Radhakrishna Rao, and Calyampudi Radhakrishna Rao. Linear statistical infer-
ence and its applications, volume 2. Wiley New York, 1973.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

