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Abstract

We construct a generative adversarial network (GAN) architecture that takes as input a text caption and outputs a
generated image described by the caption. We use the Oxford-102 Flowers Dataset with captions and images to train
our model. As a baseline, we encoded captions using skipthought vectors and created images using a conditional deep
convolutional GAN (DCGAN) with conditional loss sensitivity (CLS). From there, we fully connected the text model
using a bi-directional LSTM trainable from the loss from the GAN. Furthermore, we implemented various tweaks
for our GAN architecture, drawing from the current state-of-the-art in training techniques for GANs. Additionally,
we implement and explore the use of the novel Boundary Equilibrium GAN (BEGAN) model, which balances the
generator and discriminator loss to vastly improve visual quality, as a conditional model to generate images from caption

embeddings.

Github repo: https://github.com/samirsen/image-generator

CS230 Mentor: Olivier Moindrot

1 Introduction

Much work has been done to examine the syntax and semantics of
textual data. One way to measure textual understanding might be to
observe transfer of textual learning into the visual domain. Specifi-
cally, automatic image generation from captions is a challenging
current area of research, at the forefront of efforts in both NLP and
vision work. Beyond demonstrating an impressive understanding
of both natural language and vision for theoretical interest, high
performance on this task would have a number of practical appli-
cations. One example would be in image search: a user can type
a complicated caption phrase, a model for this task can generate
an image matching this caption, and a reverse image search based
on the content of the generated image can be used to find relevant
existing results. On a subtler note, progress in this domain may aid
in bridging the gap between tasks which can be automated (such
as prediction and classification), and those which are more open to
interpretation.

In this joint project for CS224N and CS230, we build generative
adversarial network (GAN) models for generating images of flowers
using captions from the Oxford flowers caption dataset. Specifi-
cally, we focus our efforts on improving model performance and
overall quality of generated flowers by experimenting with various
GAN architectures and language models. As a baseline, we attempt
the image generation task by passing pretrained 4800-dimensional
’skipthoughts’ sentence embeddings, concatenated with random
gaussian noise, to a vanilla 4-layer generator and discriminator
network. We find that the images produced by more complex archi-
tectures, including deep convolutional GANs and boundary equilib-

rium GANS, resulted in a higher overall image quality. Furthermore,
we find that an end-to-end model inclusive of training caption em-
bedding through a bi-directional LSTM before being passed to the
GAN architecture resulted in images that were both higher quality
and resulted in trained caption embeddings that corresponded well
with the categories of flowers in the dataset.

2 Previous Work

Previous work has been done on this task. In the space of mul-
timodal representations, Srivastava & Salakhutdinov (2012) used
a deep Boltzmann machine to jointly model images and text data.
[16] For image synthesis, before GANs, variational autoencoders
and autoregressive models (e.g. PixeIRNNs) generated promising
results. Mansimov et al. 2016 built a model to generate images
from text using attention to align text features with a canvas. [17]
Most recent work on this task has generally used some variety of
GAN. GANSs are promising for this task because they can achieve
generation of sharper images and they have been naturally extended
to conditional GANs, though their training is unstable and reliable
quantitative evaluation is difficult. Reed et al. (2016) applied GANs
to image synthesis conditioned on captions, using an architecture
that we aimed to emulate and improve upon for our baseline model.
[2] More recent work has built off of this architecture, usually by
building more sophisticated and multi-layered GAN models. Some
examples include StackGAN [7], which uses a second GAN to re-
fine and increase the resolution of images, and AttnGAN [8], which
uses attentional generative adversarial networks to do multi-stage
refinement of images.



3 Approach

At a high-level, our approach involves taking textual vector repre-
sentations of captions and then using a conditional GAN to generate
output conditioned on representations. This general approach, with
modifications, is also employed by most recent papers on this task.
Our baseline model took inspiration from the architectures proposed
by Reed et al.(2016) and Neekhara (2016). We built on top of
this by borrowing other ideas from very recent research on deep
convolutional and balanced equilibrium GANs implementing these
models from scratch in pyTorch. In contrast to recent efforts, we
also implement our own LSTM architecture for learning caption rep-
resentations that correspond with the various categories of flowers
in the Oxford Flowers dataset.

Figure 1: Images attained using our model with LSTM trained
embeddings

3.1 Generative Adversarial Networks Overview

Generative adversarial models comprise of a generator and a dis-
criminator network, we denote as G and D. When fed training
data, such as an image, G is given the task of performing forward
computations on input drawn from random noise, z, in an attempt
to output a distribution of pixels that looks similar to the original
image. The discriminator network D, then, has the task of taking
the generated and real images, and discerning with what likelihood
the generated image could pass as real. The goal is to learn a
distribution p, which can be sampled as input such that generated
images map the distribution of true images.

To learn the generator’s noise distribution, error signals from the
discriminator are backpropagated through the generator network
and as model weights are updated, G is able to construct a mapping
with the prior noise distribution such that sampled noise becomes
more correlated with the distribution of images expected to be
output. The discriminator is simultaneously trained with network
parameters updated to maximize the probability of labeling the
generated and real images.

G and D are, therefore, playing a game where D is trying to maxi-
mize the probability that it classifies generated data as fake and G
is trying to fool D by minimizing this chance.
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Figure 2: We experiment with DCGAN and BEGAN architectures
for flower generation. Input to each gan is fed from LSTM output.
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3.1.1 Input for Generator

Prior to inputting our embedded text into the generator, we pass
the embedded vectors into a fully-connected layer to reduce the
dimensions to 256-features followed by a leaky ReLU activation
function. We then sample a 100-feature noise vector z from the
normal distribution with mean O and variance 1, and concatenate
the embedded text vector and the noise vector, passing this resulting
vector into the generator.

3.1.2 Generator

| The DCGAN implementation contains six layers of the convolution

transpose functions, decreasing the number of channels while in-
creasing the dimensions of the image. After each layer, we apply a
leaky ReLU function, except for the last layer, in which we apply a
tanh function. We originally used a ReLU function, but we updated
it to a leaky ReLU to improve our generator performance over time,
as the discriminator was winning against the generator. The result
is a 128x128x3 image that is outputted by the generator.

The Conditional BEGAN model, we added an additional hidden
layer before we pass it into the generator part. An important part of
the BEGAN model is that the generator has the same architecture
as the decoder of the discriminator [3]. With this in mind, we have
defined an upsample block with two convolution layers with ELU
activations and a nearest neighbors upsample. The generator and
decoder of the discriminator has 4 upsample blocks followed by
two convolution layers with ELU and a final convolution layer with
tanh, giving us a 128 x 128 x 3 image.

3.1.3 Discriminator

The DCGAN discriminator is a 4 layer convolution network that
first takes an 128x128x3 image, decreasing the size of the image as
we go deeper and increasing the number of channels. After each
layer, we apply a leaky ReLLU activation function. We also pass the
given text embedding through a fully connected layer and concate-
nate the output of the convolution layers with the embedded text
vector. We pass this concatenated vector through two more fully
connected layers, and pass the result into a sigmoid function. To
improve the GAN, we decided to add smooth-labelling, making the
training output 0.9 instead of 1 when the right image and caption
are added [2]

The BEGAN model has a convolution block defined as two convo-
lutions with ELU followed by a convolution and an average pooling.



We pass our input through four of these convolution blocks and
several other convolution layers with ELU to created an image en-
coding. We then use a fully connected layer to make this a hidden
embedding, which we concatenate with the text encoding (hence
conditional). We have another fully connected layer to make a
hidden layer and pass it into the decoder. This decoder has the
same structure as the generator, creating a 128 x 128 x 3 image
reconstruction of the original image.

3.2 Objective
3.21 DCGAN

The discriminator’s goal is to output a 1 (0.9 with label smoothing)
when the input is a real image and the right caption. Otherwise,
when there is a wrong image to match the caption or there is a fake
image with the caption, the discriminator wants to output 0. With the
following sigmoid outputs from the discriminator, y,. < D(r,z’)
{Real image, right caption}, y,, + D(w,z’) {wrong image, right
caption}, and ys < D(f,z’) {Fake image, right caption}. We
apply binary cross entropy to the following loss function for our
discriminator:

Lp + log(y,) +log(l — y,) + log(1 — yy)

Thus, our discriminator aims to maximize the (real image, right
caption) pairing while minimizing (wrong image, right caption) and
(fake image, right caption) pairs. Our generator, on the other hand,
has the loss function:

Lg « log(yy)

Thus, the generator wants to maximize the (fake image, right
caption) output from the discriminator. Our training procedure is
summarized in the alogrithm below.

Algorithm 1: Training of CLS DCGAN

Input: real images r, wrong images w, matching captions ¢, batch size S, generator G,
discriminator D, text encoder ¢, learning rate o
,,,,, S do
z < ¢(t) {Encode G caption}
z ~ N(0, 1) {Sample random noise}
f + G(z, z) {Generate image}
z’ < ¢(t) {Encode D caption}
Y, < D(r,z") {Real image, D caption}
Yw < D(w,z") {Wrong image, D caption}
yf < D(f,z") {Fake image, D caption}
,C(Dz) <« log(yr) + log(1l — yw) + log(1 — yy) {Discriminator loss}
Eg) <« log(ys) {Generator loss}

JIp % Zf:l —ES? {Discriminator cost}
Jo < % > —Lg) {Generator cost}

D« D-a2p
G+ G- aaa—JGQ {Update generator}

{Update discriminator}

3.2.2 BEGAN

The goal of the BEGAN model is to balance the loss of the generator
and discriminator [3]. However, in this model, we aim to make the
discriminator have an encoder and decoder, resulting in an output of
an image. Thus, we modify the loss of the BEGAN model as a the
quality of the reconstruction of the image from the discriminator,
aiming to balance the reconstruction loss of the generated image
and the real image [18]. With a loss function as the L; = || - ||1.1
norm of the matrix, we have the loss function:

Lp + L(yr,7) — kL(ys, )

Our generator has the loss function: Lo <+ L(yy, f).

In this model, the discriminator’s goal is to recreate the real input
image after encoding the image as accurately, while recreating the
fake image as poorly as possible. On the other hand, G works to
increase the quality of reconstruction of the generated images. Thus,
as the two compete, G can only succeed by making more realistic
images [18].

By keeping a balance of v = % with the diversity ratio . A

low v make the discriminator focus on the recreating real images,
making the generator focus on producing more realistic images.
While a high v makes the discriminator focus on discriminating,
making the generator produce more diverse images [18]. The previ-
ous equation is equivalent to YE[L(y,, )] — E[L(yy¢, f)] = 0. We
choose to have k <— k + A(YE[L(y,, )] — E[L(yy, f)]), with X as
the learning rate that adapts k over time. By using our £ value in the
loss Lp < L(yr,7) — kL(yy, f), we balance the reconstruction
losses over time, leading to a smooth decrease in the loss function.
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Figure 3: Loss of the BEGAN model
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Due to the change in the loss function, the BEGAN model allows
for the simplification of the architecture. To begin, the generator and
decoder of the discriminator have the exact same architecture, which
is completely opposite to the encoder architecture. Also, instead
of convolution transpose layers to upsample the images, we use
nearest neighbors, which we also applied to our original DCGAN
architecture. Finally, ELU activation functions are used instead of
ReLU or leaky ReLLU. Thus, we are allowed to remove batch norm
and focus on balancing the reconstruction losses for this model.

Algorithm 2: Training of Conditional BEGAN

Input: real images 7, matching captions ¢, batch size S, generator G, discriminator D, text
encoder ¢, learning rate «, loss balancing term k, diversity ratio -y, proportional gain A
(learning rate for k)
,,,,, Sdo
x < ¢(t) {Encode G caption}
z ~ N(0, 1) {Sample random noise }
f < G(z, z) {Generate image}
2’ < ¢(t) {Encode D caption}
yr < D(r,z") {D generated real image}
ys < D(f,z") {D generated fake image}

LD (y,.,r) = ||lyr — r|l1,1 {Real image loss}
£ (yg, f) =
L(yr,7) =% Z‘le LD (y,., ) {Average real image loss}
L(ys, f) = % iszl l.:(i)(yf7 f) {Average fake image loss}
JIp « L(yr,r) — kL(yy, f) {Discriminator cost}
Ja < L(yf, f) {Generator cost}

9Jp
D+ D — a5

G+ G- 0468%;— {Update generator}
k < k+ X(vL(yr,7r) — L(ys, f)) {Update k value}

llys — fll1,1 {Fake image loss}

{Update discriminator }




4 Dataset

We used the Oxford-102 Flowers dataset collected from an online
repository for this experiment. This data set has over 8,000 images
of flowers along with nearly 10 captions for each image. On the
current model, we trained and tested our model on a small subset of
128 images of this data set. We also used 300-dimensional GloVe
vectors as frozen word embeddings for our bidirectional LSTM
model, which were trained on 6 billion word tokens from Wikipedia
2014 + Gigaword 5. [13]

5 Experiments

We first ran our baseline model, which was a simple conditional
GAN with 4 convolutional layers for both the generator and discrim-
inator. We used CLS (conditional loss sensitivity), as described in
Reed et al. 2016, which resulted in a modified loss function for the
discriminator. We used the skipthoughts model to encode sentence
vectors into a 4800-dimensional vector representation. We then
projected this representation before concatenating it with a 100-
dimensional Gaussian noise vector, as described above. We used a
learning rate of 0.0001, a batch size of 128, and data augmentation
through random flips. The model took a few hours to train, about
30 seconds per epoch. We show the loss curve for this training and
validation in our supplementary files.
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Figure 4: Various images from the different architectures.

5.1 GAN Architecture

We noticed that many of the resulting images exhibited a visible
checkerboard artifact, which motivated us to look into this issue.
We show an example of an image exhibiting this pattern in a figure.
We found this checkerboard artifact in images produced by other
models, including that by Reed et al., and found that the checker-
board pattern was a common issue with GANs. We found that one
possible solution was using upsampling and convolution for our
"deconvolutional" layers.

We modified our GAN architecture to use this paradigm, added more
convolutional layers to the generator and discriminator. After we
discovered the upsampling tweak, we also found and implemented
a number of "GAN hacks", many of which we initially read about

in Soumith Chintala’s popular Github resource bearing the same
name. [12] Some of the hacks that we implemented include one-side
label smoothing, LeakyReLLU with a leak of 0.2, using SGD instead
of Adam for the discriminator and Adam for the generator, using
Gaussian noise for the generator, using tanh as the output activation
function for the generator, using BatchNorm, learning rate decay,
avoiding the use of ReLU and MaxPool because they cause sparse
gradients, and using ELU instead of ReLU. Because of our lim-
ited timeline and the time required to train our more complicated
models (our final models took days to train), we were not able to
individually test the effectiveness of each of these tweaks for our
task, although we did learn that using SGD for the discriminator did
not seem to work well.
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Figure 5: Inception scores increase over epochs trained

The resulting model containing these tweaks as well as upsampling
produced images that did not have the checkerboard problem, but
the loss curve for training seemed to indicate some divergence of the
generator after a number of epochs. Sampled images sometimes had
backgrounds and color patterns that clearly revealed that they were
synthesized. It is difficult to tell what the cause of the instability was,
owing to the general instability of GANs and the number of small
tweaks we made to the model architecture. The train and validation
loss curves for this model are provided in the supplementary files.

After building our upsampling model, we moved on to the BE-
GAN model because we saw that it was the state-of-the-art in
non-conditional GANs and it kept an intuitively appealing balance
between the generator and the discriminator (something our other
models struggled with). Our goal was to extend the model to be
conditional, analogous to the way GANS were quickly extended to
Conditional GANS. [5] We implemented this model in PyTorch and
applied it to our text-to-image synthesis tasks. We had to reduce
our batch size from 128 to 64, as the model operations would not
otherwise fit on GPU memory. After about a day and a half of
training, this model gave us better results, with more stable loss and
training curves shown in supplementary files. For this model, we
evaluate quantitatively using inception scores, which are a measure
of image interpretability (from the perspective of an Inception v3
model) introduced by Salimans et al. 2016. [14] Our results are
shown in a figure, but we caution against reading too much into
inception scores, as they have been shown to be unreliable in that
models can maximize inception scores by producing adversarial
examples for the Inception model. [15]



5.2 Text Model Architecture

In parallel, we worked on improving our text caption encoding
model from our skipthoughts baseline. The skipthoughts model was
not trained for the task and dataset, so its encodings did not capture
important insights related to the domain. For example, a learned
sentence representation would put much more emphasis on the word
"red" in producing a caption than the word "flower", which provides
little additional information in a set of captions about flowers.

Epoch 0: t-SNE of caption embeds

Figure 6: tSNE dimensionality reduction before training

Epoch 200: t-SNE of caption embeds

Figure 7: tSNE dimensionality reduction after training

We used GloVe vectors to implement two models: a bag of words
model that averages the word vectors in a caption and uses this as a
sentence representation, and a 1-layer bidirectional LSTM model.
Both of these models use frozen embedding weights, since we sus-
pected our caption dataset was not large enough to successfully
finetune these weights without aberrations. As we expected, the
LSTM model performed much better, as it was able to capture posi-
tional information and used learned weights. Sample images from
the LSTM model are shown in figures.

6 Conclusion and Future Work

There is much room to improve the model architecture. Because
of the rapid monthly influx of GAN papers, new tweaks are being
discovered regularly to improve the stability and output quality of
GAN:Ss. Even a regular DCGAN gets a significant boost in the qual-
ity its images by applying simple "GAN hacks", such as one-sided
label smoothing, feature matching, decaying learning rate, using
SGD for the discriminator, etc.

In our work, we implemented most of these tweaks, but did not
have time to experiment with others. Moreover, we were not able to
experiment with each tweak individually and see the results for our
task. Since experimenting with GANs remains a very experimental

process, the time-consuming nature of training (especially for the
BEGAN model, which took days to train on a high-end GPU) pre-
vented us from tuning these tweaks, and we were left to guess which
tweaks would improve the performance of our model and which
would not. In the future, we would make these decisions empiri-
cally, perhaps by using multiple GPUs in parallel to speed things up,
introducing the possibility of more rigorous hyperparameter tuning.
Many variations of GANs now exist as well, even for the narrow
task of text-to-image synthesis, including StackGANs and AttnGAN.
Though we were able to explore and extend BEGANS for our task,
(and also played around with WGANS, although results were now
shown in this paper) if we had more time we would explore other
recently developed architectures to see how they perform on this
task.

Given more time, we would also devote more time to finding better
text representations and better visualizing the transfer from the tex-
tual domain to visual. We suspect that an attentional model would
achieve both good performance and interpretability, so we would
go in this direction first.

Eventually, we would want to extend our model to train on different
datasets, such as MS COCO or even ImageNet, but this may not be
feasible in the near future, as this remains a significant obstacle even
for seasoned researchers working on this task, due to the instability
of GAN training.

7 CS224N/230 Work Split

We built the baseline model from PyTorch (after learning how to
use PyTorch) for both CS224N and 230. This includes code to
load data, build our first generator and discriminator models, apply
the skipthoughts model to captions, run training, and manage ex-
periments. For CS224N specifically we built on top of this work
by replacing the skipthoughts model (which was not trained for
this task). We implemented both a bag of words model and an
LSTM model that was trained with the rest of the model. We ran
experiments and visualizations with these models, building differ-
ent sentence representations by using different hidden layer sizes,
summing/averaging hidden states, performing t-SNE dimensionality
reduction, etc. We also implemented a number of "GAN hacks" or
changes to the model architecture/training that helped with generat-
ing higher-quality images (an example is one-sided label smoothing).
Our goal with these hacks was to apply learnings from state-of-the-
art GAN models to this task. For CS230, we built new model
architectures to replace our generator and discriminator models,
including a deeper DCGAN with upsampling, WGAN (results not
shown in this paper, code in repository), and conditional BEGAN.
Our goal with these models was to significantly improve the quality
of our samples, since these are some of the most performant GAN
architectures developed so far outside of the text-to-image context.
These later models have never been implemented for this task before,
so this was a major learning experience.

8 Contributions

All members contributed on each element of the project. Trevor
lead the development of the GAN architecture. Samir headed the
task of building an end-to-end model interfacing GAN training with
the LSTM and visualizations. Karan focused on training and GPU
usage of the models as well as building a live model.
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