Machine Learning Application to A Physical System

Team Members: Abdullah Alakeely.
SUNet : alakeeaa

Category: Time series, sequence
modeling.

Background:

Predicting the behavior of subsurface
fields is a challenging task that require
accurate knowledge of the physical
properties of the field in question, and the
development of a complex numerical
simulation model that describe the
behavior of the system (figure 1).

.
i
H Actusi Production From Field

Figure 1: Conventional Numerical Reservoir
Simulation Model Building, after Dahaghi
(2009).

The development of such a model takes an
enormous amount of time and effort. In
addition, once the model is developed, one
forward run can take from couple of
minutes to a couple of weeks depending on
the complexity of the underlying physical
system described, Mohaghegh (2017).

Even though this modeling effort is

considered the standards process
describing reservoir/field behavior, the
time these models take to produce results
inhibit their efficient utilization when a

quick answer is sought after. Not to

mention, the number of forward runs in a
production optimization workflow can
reach a large value, and simulations runs
in the order of 1000’s is not uncommon,
Yeten et al. (2005).

Previous work has been done to apply
machine learning in similar setting in
petroleum engineering to help reservoir
characterization (Tian and Horne, 2015a,
2015b, 2017)

It is attractive to explore if advances in
machine learning algorithms and methods,
such as advances in Recurrent Neural
Networks understanding, could help
accelerate the process of forward molding
of such simulation models with good
accuracy, which is the topic of this report.

The investigation of this problem will be
formulated as a supervised learning task.

Data: A simple physical model of an
underground oil reservoir under water
injection has been proposed. Two wells,
one injects water and the other produces
oil, are used in the model to generate
pressure and rate profiles for 5 years. The
process is repeated multiple times starting
from same initial conditions, but under
different production and injection rates to
generate additional behaviors using the
same underlying physical model, resulting
in 9 different scenarios of the same
reservoir. In every case/scenario, the
number of changes of oil rate and water
rate during 5 years period has been

randomly chosen between 1 and 4. From
the number of changes, a time of rate
change is randomly chosen in the range [1,
1800] days.

Oil and water rates are chosen to take
values randomly from the ranges of [0,
2000] bbl/day, and [-500, 0] bbl/day,
respectively. Where bbl refers to the
volume of production in barrels.

Task: Given rate profiles as a time series
of T time steps, from a specific reservoir as

an input feature, represented by

daQ di 4XT . .
{Q,I, " ,dt} €R , with corresponding
pressure profiles as an output, represented

by {P_Q,P_I} e R?XT |

The machine learning model should
theoretically map the relationship between
rate and pressure values, and re-produce
the relationship in wunseen scenarios
produced from the same physical system.

If successful, then we can say that the
machine learning model learned the
reservoir behavior and able to replace the
reservoir simulator to do the same takes.
In practice, only one production profile
from the actual reservoir through time is
available, being able to reproduce the
behavior of the reservoir with smallest
number of training example is essential in
this domain. This will be explored during
training/dev/test sets discussion.

Training Strategy:
Processing Data:
The rate, and pressure vectors are scaled

by maximum values then multiplied by
0.99 and offset by 0.01 to render the data
in a range < {0.01,1}, with the aim of

speeding up convergence. Gaussian noise
is also added to data to make it realistic.

Train/Dev/Test Split:

Because one of the goals is to be able to
learn the reservoir behavior with the
smallest number of scenarios, which will
result, if successful, in learning from a low
number of generated simulation runs.
Here, we start by using one sequence
for training (full time series of case 2),
one for dev set (case 6), and the rest are
used for testing. The division could be
changed based on results.

Performance Metric:
The performance of the trained model will

be evaluated based on how well the model
perform on training, development, and
testing sets. This will be evaluated by
measuring the average of sum of error of
the two wells, injector and producer, where
error is defined as:

Error =y — y|

Separating the performance this way
allows for better judgment on what
could be an issue in case of poor
performance.

Model Architecture and Optimization
Metric:

Figure 2 shows the architectures of the
three models we start with.

Inputs Inputs Inputs

vy v ov 3 vor oy

Simple RNN | tanh Simple RNN Linear | Simple RNI\; tanh

Simple RNN | tanh Fully Connected tanh Fully Connected | Linear

Simple RNN tanh Simple RNN Linear | Simple RNN | tanh
Fully Connected | Linear Fully Connected | tanh Fully Connected | Linear

| Fully Connected | Linear Fully Connected | Linear

Outputs v ¥ vy
Outputs Outputs

1 2 3

Figure 2: Recurrent Neural Network
Architectures used.

Tanh activation function in some hidden
layers, because we are modeling a highly
non-linear system. Linear activation
function is used in last layer, which is
made of two neurons corresponding to two
outputs. The number of hidden layers is
different for different architecture ranging
from 3 to 4 layers. The best values for
nodes in hidden layers, n, and learning
rates will be found through grid hyper-
parameter search.

During training, Mean Squared Average
Error between labeled pressure values,
y={P_Q,P_1}eR*T | and model
predicted pressure values, y=
{P_Q_predicted, P_I_predicted} e R** T, will
be used as the cost function to be
optimized.

Adam with default beta values will be used
as an optimizer.

Results and Discussion:

Initial Search: A grid search of the
following values of learning rate = [0.0001,
0.001, 0.01, 0.1, 1], and the following
values of nodes in the hidden layers, n = [
5, 10, 15, 20, 25] was conducted for the
proposed networks. The performance was
evaluated after training for 200 epochs.
Figure 3 shows the performance of
architecture 1, on train/dev/test sets. A

Similar trend is observed on Architecture
3, while Architecture 2 was eliminated due
to producing NaN outputs, suggesting an
exploding gradient issue.

This leave us with two architectures to
continue with, namely: Architecture 1, and
Architecture 3 (renamed architecture 2
from now on).

20l(x)\[gerage Error vs Number of Nodes, Architecture 1, 200 epochs

=+ |r=0.0001 training
=== Ir=0.0001 Dev
== Ir=0.0001 test
=+ |r=0.001 training
=== Ir=0.001 Dev
== Ir=0.001_testing
=+ Ir=0.01 training
=== Ir=0.01_Dev
~®= |r=0.01_testing
=*= |r=0.1_training
=== Ir=0.1 _dev

== Ir=0.1 testing

750

Average Error
i
5
=]
8

4 6 8 10 12 14 16 18 20
Size of Nodes

Figure 3: Architecture 1 performance.

As suggested in figure A.3, there is a clear
sign of overfitting to training data, as the
performance on dev and test sets are
worse. However, we need to make sure the
models can actually perform well on the
training sets, so we perform a longer
search up to 500 epochs, figure 4 shows the
results of the two best performing network
out of each architecture (15 nodes trained
with learning rate of 0.001).

Average Error vs training epochs, 2 architectures, one training example
1201

== training_architecture 1
=+ training_architecture 2
=== Dev architecture 1
- === Dev architecture 2
800 e o @~ Testing architecture 1
Testing architecture 2

1000 e

€00 e T

Average Error

400

200 N

0 T T T T
150 200 250 300 350 400 450 500 550
Training epoches

Figure 4: Best performing networks from each
architecture as a function of training epochs.

As shown in the plot above, training the
network longer improved the performance
on training set slightly. However, the
performance on both Dev and test set got
worse. It is clear from the fact that we are
using one scenario in both training and dev
sets over fitted the network to that
example.

We try now increasing the training and dev
set by adding more examples to both.

Switch Sequence: As demonstrated by
previous search runs, the overfitting
phenomena could be reduced by adding
more data. We now add more examples to
both training and dev sets and we train for
500 epochs employing a switch sequence
strategy, every 5 epochs as described by
Horn (2009).

The training results shows that the
network with architecture 1 performed
better in the sense that performance on
testing and dev sets is not far from training
set. However, the error is still high. Figure
5 shows the performance of the best
network in the search (15 nodes, and
learning rate= 0.001).

Average Error vs architecture using two examples in train/Dev sets
1000

=+ training_set_performance
=== Dev_set_performance

900 ~&~ Testing_set_performance

800

700

Average Error

600

500

400

T T T T T T
10 12 14 16 18 20
Architecture

Figure 5: Architecture 1 performance.

One important observation is that the
network performance is improved by
utilizing switching sequence strategy.

The above results suggest that we may
improve the performance by focusing on
the network with architecture 1, which is
what we do next.

Further Tuning: The focus now is on
network with architecture 1, we repeat the
experiments for 500 epochs. However, we
now run them only at two node sizes, n =
[15, 25], and two learning rates= [0.0001,
0.001]. In one experiment, we apply L2
regularization to the network (L2=
0.000001). In the second experiment, we
apply the same regularization and we use
gradient decent (SGD)
optimization algorithm instead of Adam

stochastic

with gradient clipping set to (0.8). Table 1
shows the error results of the run for
training/dev/test sets.

Table 1: Comparison of Performance of Adam (right) vs SGD (left) optimizer
Number of Nodes

15 25 15 25

0.0001 (664.532787 | 718.353718 | |0.0001 [1013.027431|677.342989

0.0010 (682.074714 |667.204184 | |0.0010 (716.032379 |663.002491

Training Set

15 25 15 25
0.0001 [685.784764 | 750.764393 | 0.0001 | 1121.042843 | 708.708184

Dev Set

Learning Rate

0.0010 (731.097060 [719.511383 | (0.0010|763.730915 |741.964115

15 25 15 25
0.0001 |683.441654 | 717.334051 0.0001 | 1007.185252 | 696.885029
0.0010 | 709.653391 |699.205883 | [0.0010 |769.911982 |777.264519

t Set

Tes

Interesting to note is the outcome of this
experiment. As shown in the table, the
performance of regularized 15 nodes
network optimized using SGD is better
than the one optimized using Adam. This
holds true for both learning rate values
tried. The 25 nodes network results are

comparable between both optimizers.
However, we see that in general, SGD
performed comparably or better than
Adam for this task, suggesting that it
might be a better optimization choice for
the network and problem we are trying to
model. From these experiments, network
with lower learning rate (0.0001) and n=15
performed the best with SGD and below is
a learning history plot comparing the
learning evolution using SGD and Adam
optimizers (figure 6).

learning rate=0.0001

06

lss
o

a1

00

learning rate=0.0001

— train 15
-== validation 15
— ftrain 25

=== validation 25

loss

A RARRGASAMARA AR AR

100 200 00 400 500
epoch

Figure 6: learning history using SGD (top) and
Adam (bottom).

It is clear that the SGD optimizer had a
stable learning behavior as compared to
Adam where it showed an increase in loss
around 150 epochs before decreasing
again. However, the value it decreased to
is still higher than SGD. Making SGD the
better optimizer here.

Below we show some examples of the
prediction results of the best performing
network in our search. The network is
based on architecture 1, has 15 nodes, uses
SGD optimizer with Ir =0.0001, and switch
sequence every 5 epochs.

Pressure Profile, scenario =2

— PO
~=- predicted P_Q
— Pl

=== predictad P_|

Pressure

0 20 400 600 200

Pressure Profile, scenario =6

— FaQ
~=- predicted P_Q
— Pl
=== predicted P_|

Pressure
“
8

20 400 @00 800

Figure 7: Examples of Prediction of trained
network.

Conclusions and Future Work:
The following is observed:

1. As demonstrated, arriving at the
right combination of architecture
and hyper-parameter for the
network is an iterative process and
requires many trials. Using random
search should help accelerating the
process, which will be explored
further.

2. There 1is a clear dependency
between the amount and data
distribution, and performance of

the network as demonstrated by
improved performance by adding
more data. Using the K-cross
validation in a sequence switching
scheme should be helpful as a
hyper-parameter.

3. SGD performed better in our
search, indicating that Adam might
not be the best choice in every
problem. More work and trials are
needed to confirm the finding.

4. Other memory cells (LSTM, GRU)
could be wused to improve
performance especially in early
time dependency which was not
captured properly (figure 7).

Acknowledgment: The Author take this
chance to thank Professor Roland Horne
for his guidance and SUPRI-D research
group members for the rich discussions on
Al projects.

References:
Dahaghi, A. K., & Mohaghegh, S. D. (2009,
January 1). Intelligent Top-Down

Reservoir Modeling of New Albany Shale.
Society of Petroleum Engineers. SPE
125859-MS

Enyioha, C., & Ertekin, T. (2017, October
9). Performance Prediction for Advanced
Well Structures in Unconventional Oil and
Gas Reservoirs Using Artificial Intelligent
Expert Systems. Society of Petroleum
Engineers. SPE 187037.

Horn, J., De Jesus, O., & Hagan, M. (2009,
April). Spurious Valleys in Error Surface of

Recurrent Networks- Analysis and
Avoidance. IEEE

Mohaghegh, S. (2017). Data-Driven
Reservoir Modeling. Richardson, TX:
Society of Petroleum Engineers.

Tian, C. and Horne, R.N., 2015a, April.
Applying Machine Learning Techniques to
Interpret Flow Rate, Pressure and
Temperature Data from Permanent
Downhole Gauges. SPE Western Regional
Meeting.

Tian, C. and Horne, R.N., 2015Db,
September. Machine Learning Applied to
Multiwell Test Analysis and Flow Rate
Reconstruction. SPE ATCE.

Tian, C. and Horne, R.N., 2017, October.
Recurrent Neural Networks for

Permanent Downhole Gauge Data
Analysis. SPE ATCE.

Yeten, B., Castellini, A., Guyaguler, B., &
Chen, W. H. (2005, January 1). A
Comparison Study on Experimental
Design and Response Surface
Methodologies. Society of Petroleum

Engineers. SPE 93347-MS

Link to code:
https://github.com/alakeeaa/CS230/inv
itations

