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Abstract

Seizures are aberrations in the brain’s normal electrical activity that produce disrup-
tive physical symptoms. To diagnose and characterize seizures, clinicians measure
the brain’s electrical activity using electroencephalography (EEG), a method that
involves placing electrodes on a patient’s scalp to measure voltage differences
across the brain. Due to the variety of seizure types and different presentations be-
tween people, no general model has been made to identify seizure from non-seizure
EEG data. The goal of this paper is to build such a general recognition model. To
do so, we used a data set of 99,721 EEG files recorded at Stanford Hospital over
the last number of years, significantly more data than any other EEG classification
paper has used. We examined the performance of logistic regression, dense neural
networks, convolutional neural networks, and recurrent neural networks and found
that the a 5-layer convolutional neural network followed by two dense layers per-
formed best. We achieved 95% accuracy, significantly higher than any published
work on a general cross-patient model.

1 Introduction

Affecting fifty million people worldwide, epilepsy is a chronic disorder of the central nervous system
characterized by recurrent seizures Megiddo et al. (2016). During a seizure, aberrations in the
brain’s electrical activity produce physical symptoms ranging from convulsion to loss of memory
to unconsciousness. An electroencephalogram (EEG) is a record produced by electrophysiological
monitoring of the electrical activity of the brain. Electrodes are placed on the scalp and measure
voltage fluctuations between the nodes as the net effect of millions of neurons in the brain. EEGs are
used for diagnosis of a number of neurological disorders, including epilepsy, sleep disorders, comas
and more.

Our goal task is to train a single neural network to classify an epoch of EEG data from any patient as
being seizure or non-seizure. Previous attempts at EEG classification have been limited to

1. Building separate models for each patient.

2. Using highly cleaned benchmark data sets of only certain seizures and non-seizure activities.
We hope to overcome these shortcomings by using vastly more data than previous attempts. For

example, Shoeb (2009) used 23 patients and 844 EEG files, whereas we have access to 12,385 patients
and 136,363 EEG files.
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2 Related work

Computational detection of seizures from EEG has been attempted a number of times over the last 15
years. However, successes have been limited to being patient-specific, as in Shoeb (2009) or being on
a very small and well-cleaned data set, as in Thodoroff et al. (2016); Fiirbass et al. (2015); Hosseini
et al. (2016). The main challenge is that seizures present dramatically different EEG data for the
various types of seizures, for different patients, and even for a given patient. This is discussed
in nearly every paper on the topic:

e "This is a challenging problem because seizure manifestations on EEG are extremely variable
both inter- and intra-patient... Traditional methods typically do not perform very well on
new patients, due to their low capacity to generalize well across different seizure patterns."
Thodoroff et al. (2016)

e "Main challenge is finding reresentations that are invariant to inter- and intra-subject dif-
ferences, as well as to inherent noise associated with EEG data collection." Bashivan et al.
(2015)

o "The first challenge is due to the fact that EEG is not a stationary signal. Therefore, normal
and seizure patterns may vary across different patients." Hosseini et al. (2016)

We are uniquely positioned to overcome this challenge because we have access to a data set that is
significantly larger than anything used in other research. See Dataset discussion below for more
details. Below is an in-depth review of previous model performance.

To begin, Tzallas et al. (2012) provides a good literature overview of the different computational
techniques used over the last 15 years to identify seizures in EEG. These range from hand-engineered
heuristics to various learning algorithms.

The most noteworthy achievement before the application of neural networks was the development of
Filter Bank Common Spatial Pattern (FBCSP) Ang et al. (2008). These perform autonomous selection
of key temporal-spatial discriminative EEG characteristics by passing EEG through frequency filters,
a feature selection algorithm, and a classification algorithm.

In his PhD thesis, Shoeb (2009) had the first breakthrough for machine learning to detect seizures
by building a patient-specific classifier. His model was trained on 2 or more seizures and tested
on 844 hours of continuous scalp EEG from 23 pediatric epilepsy patients and detected 96% of
163 test seizures with a median 2 false detections per 24 hour period. Furthermore, the data set
developed in this work was open sourced as the Children’s Hospital of Boston-Massachusetts Institute
of Technology dataset (CHB-MIT) and became used as a standard training data set. The CHB-MIT
dataset contains 23 patients and 24 recordings (one patient had two reads) for a total 969 Hours of
scalp EEG recordings with 173 seizures. The data set includes male and female patients aged 10-22
with a diversity of seizures (clonic, atonic, tonic).

Thodoroff et al. (2016) used this data set but with more complex Fourier video representations as
described by Bashivan et al. (2015) and with a more complex convolutional-recurrent network. In
detecting whether a 30 second segment of signal contains a seizure or not, their model outperformed
Shoeb with 95-100% accuracy on patient-specific data. When testing on a cross-patient basis, the
model achieved 85% accuracy.

Fiirbass et al. (2015) used a slightly larger data set with 205 patients from 3 different epilepsy centers
but only achieved an average sensitivity of 67% on the CHB-MIT.

Finally, Hosseini et al. (2016) achieved success but on a small clinical dataset of two epileptic patients
(with 60 interictal and 60 preictal segments) that was developed by the University of Pennsylvania
and the Mayo Clinic. Using a dimension reduction and a stacked autoencoder, they achieved accuracy
94%.

EEG data is used for a variety of clinical purposes, so researchers actively develop computational
methods to identify a various activity. As such, representational and architectural advances for EEG
data have often come from non-seizure related tasks. For example, when developing a model for a
cognitive load task, Bashivan et al. (2015) proposes a video-like representation of EEGs whereby the
electrodes are projected onto a 2-D plane and a Fourier transform of intensity in three hand-engineered
buckets creates three channels to generate an EEG video that can then use any neural network from



video analysis. Similarly, when developing a model for identifying movement-related information,
Schirrmeister et al. (2017) developed a 1-dimensional convolutional neural network that inspired the
convolutional neural network used in this paper.

3 Dataset

Put briefly, our data set is huge and heterogeneous. The data set consists of 136,363 electroen-
cephalograms: 99,721 from adults measured at the Stanford Hospital and 36,642 from children
measured at the Lucile Packard Children’s Hospital. The data is remarkably heterogeneous:

e Type: intracranial and scalp

e Reason: routine, long-term EEG, ambulatory
study, diagnosing epilepsy, diagnosing some
other disorder, etc.

e Length: 5 seconds to 24 hours
e Frequency: 200 Hz to 500 Hz
o Age: 0to 100+

e Channels: 3 to 142

Figure 1: An example EEG in which a
seizure begins around t=1836 seconds

Each electroencephalogram is stored in a hierarchical data
format (HDF) containing anonymized data about the pa-
tient, metadata about the EEG read, the raw signals of the EEG read (a matrix with shape number of
channels by length of EEG), and accompanying annotations with timestamps for the EEG. Because
the data is not explicitly labeled as seizure and non-seizure, we use the accompanying annotations as
a proxy for seizure labels. Unfortunately, the annotations rarely list the seizure end, so we only know
the start of seizures.

It is worth re-emphasizing that unlike other data sets used in previous research, this data set contains
an immense variety of seizure and non-seizure data. It contains every type of major seizure
occurring in many different ways, and it contains non-seizure activity not included in any of the
highly cleaned benchmark data sets such as eating, tooth-brushing, and exercising. This wide variety
of activity improves the clinical usability of our final model because our results generalize quite well
to all gathered EEG data.

4 Pre-Processing

Given the heterogeneity of the data, we filtered our data to be self-consistent by restricting our scope:

e Only including scalp EEG (i.e., excluding in- o
tracranial reads). R

o Taking reads only from the 25 nodes in the Inter-
national 10-20 System.

e Limiting length to minimum time of seizure: 10

seconds.
e Only including files with a sampling rate of 200 Figure 2: The nodes used in the
Hz. International 10-20 System

e Standardizing each waveform to have mean 0 and
standard deviation 1.

With these filters in place, we defined our seizure and non-seizure data:

e Seizures: Every time a file contains a seizure annotation, slice the following 10 seconds.
There are 11,641 unique files with 25,850 labeled seizures fitting the above filtering.



e Non-seizures: Randomly sample a 10-second slice from all files without a seizure annotation
to get 25,850 non-seizures occurrences. This ensures that we train with a training balance of
an equal number of seizure and non-seizure data points.

This ultimately gave us 51,700 matrices shaped 25 channels by 2000 = 200Hz x 10 seconds with a
binary label, 1 for seizure and O for non-seizure. We split this data into 90% training, 5% development,
and 5% test sets.

S Proposed Architectures

We tested four different model architectures:

e Baseline: Flatten the matrix into a 50,000 dimensional vector and run logistic regression
via a one-layer neural network with no hidden layers.

e Dense Network: Flatten the matrix into a 50,000 dimensional vector and run it through two
hidden layers with size 1000 and 30 each with ReLU activation functions before outputting
a single neuron with a sigmoid activation function.

e Convolutional Network: Run the 2000x25-dimensional matrix through five 1-dimensional
convolutional layers each with 10x1 filters, 3x1 max-pooling, and exponential linear units.
Flatten the remaining matrix and run it through one layer with batch norm, dropout, and
ReLU before a final layer with a sigmoid activation function. This model is based off the
work done by Schirrmeister et al. (2017). In each layer with input size (N, C;y,, L;, ) and
output size (N, Cout, Lout), We apply:

Cin—1
out(Ni, Cout;) = bias(Cout;) + Z weight(Cout, , k) * input(Ny, k)
k=0

where x is the cross-correlation operator, IV is batch size, C' is channel number, and L is
sequence length.

e Recurrent Network: Process each of the 2000 inputs into two bi-directional LSTM units
followed by mean pooling, a dense layer with batch norm and ReL.U, and a final layer with
a sigmoid activation. This is based on many-to-one recurrent networks on temporal data. At
each time step ¢, each of the two hidden units calculates:

iy = o(Wizs + by + Whihi—1 + bpg)
ft = o(Wipxs + bif + Whhe_1 + bry)
gt = tanh(Wigzy + big + Whghi—1 + brg)
0y = 0(WioZt + bio + Whohi—1 + bio)
ct = frci—1 +itGs
ht = ogtanh(c;)

where hy, ct, x4, are the hidden state, cell, and previous layer’s hidden state at time ¢. Also,
it, ft, g¢, o¢ are the input, forget, cell, and out gates, respectively, at time ¢.

6 Results

As expected, the worst performing architecture was the logistic regression model. With just 50,000
parameters, it couldn’t fit much beyond guessing.

The densely connected feed-forward neural network did significantly better than expected, achieving
a test set accuracy and F1 score of 90.8% and 0.897, respectively. It’s interesting that it could do so
well without being designed to take advantage of the spatial or temporal features of an EEG. The
architecture’s flexibility likely was its key to success as it had over 1 billion parameters to tune.

The convolutional neural network was the top performing architecture. It achieved the highest test
accuracy and F1 score at 95.2% and 0.943, respectively. This is as expected because this network



Table 1: The training and test accuracy and F1 score for the four model architectures described above.
These results were found after iterating on exact model architectures and hyperparameters used. The
metrics shown are at apparent convergence after 50 epochs of training.

Model Data | Accuracy | F1 Score
Logistic Train 56.5% 0.535
Logistic Test 54.6% 0.533

Dense Train 90.8% 0.921
Dense Test 90.2% .897
Convolutional | Train 96.5% 0.947
Convolutional | Test 95.2% 0.943
Recurrent Train 60.1% 0.621

Recurrent Test 58.3% 0.592

architecture was explicitly designed to take advantage of the temporal structure of an EEG with the
added flexibility of a final densely-connected network.

The bi-directional LSTM network performed okay with an accuracy around 60%. Its lackluster
performance is likely due to the known challenge of training an LSTM with 2000 time steps, larger
LSTMs usually work with. We expect this network could perform significantly better if we used
convolutional filters or down-sampling to reduce the number of input time steps before feeding it into
an LSTM.

7 Discussion and Next Steps

Our top-performing architectures were the densely-connected and the convolutional networks. Both
achieved accuracies and F1 scores over 90%, well-beyond the results of published work for a
general EEG classifier used on any patient to classify any of the types of seizures. This is especially
remarkable given the heterogeneity of the data, which contains ample non-seizure activity, many
types of seizures, and many patients.

That said, we plan to pursue each of the following three steps and expect them improve our modeling
capabilities:

1. Improve Labels: The current seizure annotations are not trustworthy and, more importantly,
often missing. We can apply labeling functions to generate sound training data via weak
supervision as described in Ratner et al. (2017).

2. Improve Embeddings: We currently use the raw waveform. However, Bashivan et al.
(2015) proposes representing an EEG as a video by (1) projecting the nodes into two-
dimensions, (2) taking the Fourier intensity of three discretized buckets over a t-second
interval, (3) combining these three channels to create an image, and (4) combining images
temporally to make a video. This captures temporal and spatial data in EEGs and will allow
us to use standard video neural net architectures.

3. Improve Network: Our proposed models have been relatively shallow compared to what
Dai et al. (2017) suggest is necessary to capture all information from raw waveforms.

Given its success on such a general data set, this work is already clinically useful as a tool to label
EEGs. That said, there are two additional tasks we hope to tackle using deep learning on this data:

1. Segmentation: We would love to build a model that could segment an entire file into
seizure and non-seizure activity. Unfortunately, the annotations in our EEG files usually
only mark seizure start, so we plan to tackle this either using weak supervision as described
above to generate labels for the training set or by running our current network and using
time-dependencies to create continuity.

2. Prediction: An ultimate ambitious goal of the project is to forecast a seizure z-seconds
before it occurs. Although we already have the infrastructure to test this, we do not expect
great results as even the best clinicians cannot forecast seizures from EEG data with any
improvement over guessing.



8 Contributions

I was the only student working on the project. I wrote the code that pre-processed the data and
implemented and iterated on the deep learning architectures presented in the paper. All of the code
used to build this model can be found at https://github.com/nhershey/cs230eeg. I also wrote the poster
and final report.

That said, this project could not have been happened or been successful without the help of some
collaborators and advisers:

e Dr. Chris Lee-Messer, MD, PhD: Dr. Lee-Messer is a pediatric neurologist at the Lucile-
Packard Children’s Hospital and a Clinical Assistant Professor of Neurology & Neurological
Sciences at Stanford University. He provided access to the dataset used in this project and
served as the expert on all things related to electroencephalograms, epilepsy, and seizures.
He was instrumental in working with this large data set and determining what type of
featurization made sense.

e Jared Dunnmon, PhD: Jared Dunnmon is a postdoctoral research fellow in the InfoLab at
Stanford University focusing on weakly supervised machine learning. He helped me get
set up on Stanford computing resources and provided advice on designing deep learning
networks.

e Paroma Varma, PhD: Paroma is a third year Ph.D. student advised by Prof. Chris Ré
and affiliated with the DAWN and Infolab groups focused on making machine learning
easily usable for domain experts who do not have access to the massive datasets required for
training complex models. She acted as a research mentor to me on this project.

e Professor Christopher Ré, PhD: Christopher (Chris) Ré is an associate professor in the
Department of Computer Science at Stanford University in the InfoL.ab who is affiliated
with the Statistical Machine Learning Group, Pervasive Parallelism Lab, and Stanford Al
Lab. His work’s goal is to enable users and developers to build applications that more deeply
understand and exploit data. His contributions span database theory, database systems, and
machine learning. He served as an adviser to this project.
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