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1 Introduction

In recent years, significant effort has been put into image compression. Several compression frame-
works have been proposed in attempt to achieve high-quality image compression at low bit rates and
achieve success in consolidating repetition, redundancy, and irrelevancy in images. What has not been
as heavily investigated, however, is a similar task on audio. Thus, for this project, we are investigating
a similar question of how to build off of the advancements in deep learning for compression, but for
music. The aim of music compression is to reduce the redundancy in a song in order to be able to
store, transmit, and search for the song at low bit rates.[5]

Music files are traditionally relatively large and difficult to process, so compression methods are often
used to reduce the file size. MP3 files are one such compressed representation that results in lost data.
Our project seeks to use neural networks to convert audio files into a compressed representation that
reduces file size while still allowing reconstruction of the original file. Unlike prevailing literature
that tends to center around spectogram representations of an audio file[6], we attempt to investigate
whether it is possible to garner higher quality and better compressed output on raw audio signals.

1.1 Applications

The applications of a properly compressed music file could be significant in several contexts. We
believe that if the representation is smaller than those one could normally garner from other com-
pression methods, or if the representation is quicker to compute, then it could potentially be used to
improve current music storage and reduce the data that must be transferred while streaming. Proper
and quick compression might also have application in the analysis of music data, in the case that
these compressed representations encode semantic information present in the song that could be used
for overall deciphering, searching, and indexing.

2 Dataset

We use the FMA music analysis dataset [1][4], which provides 917 GiB of audio from 106,574 tracks
from 16,341 artists and 14,854 albums of 161 genres. Along with this audio, the dataset provides
pre-computed features with track- and user-level metadata, tags, and free-form text.

For rapid iteration, we use the smaller version of the dataset containing 8,000 30-second snippets
taken from a multitude of songs across 8 balanced genres, in MP3 format. The next step is to try the
medium dataset available (containing over 25,000 tracks of 30-seconds) and then the largest dataset
available (containing over 106,000 untrimmed tracks).
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2.1 Pre-processing:

We convert each MP3 track to WAV format, which yields a vector of floats between -1 and 1
representing the audio signal. Because the vectors representing each 30-second track is quite large
(1,320,000 values), we split the WAV file into 30, 1-second chunks. Each of these chunks is used as a
training example. To improve training, signal values are multiplied by 10.
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Figure 1: Audio sample is split into shorter 1-second chunks.

3 Approach

Initially, we considered approaches such as encoder decoder RNNs to compress the WAV
file down by some factor and then attempt to rebuild the original file. However, because of
the large amount of data in even one second of data (the wav files for one-second snippets
ultimately form vectors of 44,000 floats), we fear that training RNNs on this data will be too
difficult. Instead, we opt to use convolutional neural networks. Taking inspiration from Feng
Jiang et al. [5], we use an encoder network as a compressor, and a decoder network for decompression.

The two components are trained in conjunction, with the output of the encoder being fed into the
decoder, and the output of the decoder being evaluated. The combined network is trained to minimize
the mean squared error between the one-second sample of the original track and the the generated
one-second output signal.

1 T

MSE == (f(t) - f(t))*

t=1

Where T is the total number of samples in the signal (4400 per second of audio), f(¢) is the value at

time ¢ of the original signal, and f (t) is the value at time ¢ of the generated, decompressed signal.
We train the network on a very small batch of the data (roughly 48000 one-second snippets from
sampled songs) to test the network’s compression and reconstruction capabilities.

We iterate over several models, each with different encoder and decoder architectures as follows:



3.1 Model 1
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Figure 2: Grey boxes show encoder layers and pink show decoder layers

3.2 Model 2
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Figure 3: Grey boxes show encoder layers and pink show decoder layers

3.3 Model 3
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Figure 4: Grey boxes show encoder layers and pink show decoder layers.



4 Evaluation & Results

Duration

Model 1
3 Compression Layers 0.0040 0.0388 0.8561 112.87 ms
4 Decompression Layers

Model 2
3 Compression Layers 0.0021 0.0278 0.9206 77.29 ms
4 Decompression Layers

Model 3
4 Compression Layers 0.0010 0.0182 0.9639 61.27 ms
5 Decompression Layers

Figure 5: Model performance. Performance metrics of our two best music compression
and decompression models on 131 examples. Both provide 4x compression.
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Figure 6: Mean absolute error and mean squared errors over batches for Model 3.

We evaluate the model on 131 complete, 30-second tracks, by processing one second at a time and
then combining the one-second, decompressed samples for each track. For each model we look at
mean squared error, mean absolute error, correlation, and compression/decompression duration.
The network is able to learn most of the underlying pattern, but the loss graphs are very jagged,
suggesting that maybe a smaller learning rate should be used. The training was done on a very small
batch of data, so it is possible that more data will smooth out the curve and allow the network to learn
better. We also notice that the errors have a sharp drop within the first 5000 batches and then seem to
stabilize. Perhaps this is an indication that too much compression is happening in the first few layers.

We notice that the best model is that with smaller filter sizes and more convolutional layers in the
decoder component (Model 3). This suggests that a more gradual approach to compression and
decompression, over a deeper architecture may be more effective in avoiding a stabilizing error and
instead allowing for one that compresses more cleverly over layers that eventually result in an ever
lower error.



S Conclusion and Next Steps

Through our iterations we see that convolutional neural networks are able to fairly successfully
compress music samples to one fourth of their original size. This is a significant result given that MP3
compression typically achieves between 75 and 95 percent reduction in size of original file[3]. Our
methodology allows for significantly more reduction. Furthermore, while the decompressed samples
are somewhat noisy, they preserve most of the underlying music signal and performance scales
well across genres. Voice also comes through well throughout this process. There are techniques
for removing sound through conventional filters that we can attempt to use in ridding some of this
noise fairly easily. Another thing we can look into is incorporating an attention mechanism into our
networks [7].

We believe that taking genre into account as an input may result in better decompression. Perhaps
the network will learn to account for similarities in genre. We also believe that evaluating semantic
information captured in compressed representations may reveal potential use for compressed samples.
If, for example, we’re able to compress to a level greater than 4x in future models and not achieve
sound quality that is comparable to MP3 quality, we might consider using the compressed represen-
tations for quicker search and compare amongst a database of song representations. This would be
useful in creating much more efficient searches that use fewer computing resources and time due
to the representations of music that contain enough content to encode the underlying meaning and
representation of the song yet without enough encoded content to be able to decompress the song to a
quality that consumers would find indistinguishable from an MP3 quality version of the song.

6 Contributions

We have mostly worked on the code concurrently, though much of the division of labor has involved
coding up and trying different models at the same time. Divya and David focused a little more on
getting the data and model evaluation pipeline working so we can iterate on models more quickly,
whereas Michael focused on refining the models once we settled on the convolutional framework.
Our work can be viewed on our github page [2].
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