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1 Introduction

Topology optimization is an under-utilized, yet powerful tool for design because it is able to form
novel geometries for a given set of loads, frequencies, and constraints on a system. It works by taking
input conditions (forces on the system and boundary conditions) and it fills in the optimal material
density distribution as shown in Figure 1.
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Figure 1: Topology optimization inputs and outputs.

Topology optimization starts with a rectangular design space discretized into n x n elements. Every
optimization has a set of fixed elements, and loads acting on specific elements (ex. a bridge has two
fixed ends with the force of gravity acting down on it’s center in a simplified model). As the designs
are optimized, each element gets filled in with a probability between 0 and 1 of being a material or
void. There is an upper bound on the fraction of material in the design space that can be filled in,
preventing the optimization from simply filling all of the elements in. At the end of the optimization
each element is classified as either material (1) or void (0) with the overall compliance of the structure
minimized for the given loads on the system.

While topology optimization can help form non-intuitive designs, it is computationally expensive
and slow, which opens the door for other computational techniques like deep learning to help out the
process. In this project, the inputs to the model are 2 channels: (1) the topology optimization that
was stopped after just 5 iterations (it usually takes 100 to converge) and (2) the difference between
the topology from iterations 4 and 5; both are shown at left in Figure 2. The output is the optimal
topology of the system; in this study we use iteration 100 of the topology optimization from the
dataset as the ground truth labels (discussed in more detail in Dataset section).

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



diff. between iterations 4 neural
and 5 of top. opt. network

top. opt. stopped after 5
iterations (usually takes 100
to converge)

topology which minimizes
compliance of the system

Figure 2: Neural network inputs and outputs.

To form the outputs from the given input channels this project tried out 2 different neural network
architectures: (1) a shallow neural network and (2) a deep neural network that has the U-net
architecture [1]. The deep neural network follows the implementation in [2] closely.

2 Related work

Overall, structural optimization and neural networks have not been studied together very much. The
paper in [2], which this work follows closely, stops the structural topology optimization early and
implements the U-net architecture [1] to predict the output topology. The strength to their model
is that it very accurately predicts the topology of the system, however they don’t discuss how to
bridge the gap to remove the topology optimization process entirely and go straight from the forces
and constraints on the system to forming the optimal topology. This paper is currently the most
state-of-the-art and is unique in its application. In [3], they implement a unique model which smooths
out optimized topologies to make them manufacturable; their CNN groups certain similar shapes and
smooths the surfaces to make them all conform to a more manufacturable geometry. There are a few
papers like [4,5] which are focused on predicting structural failure using a neural network, but these
approaches rely heavily on additional simulation to predict the failures.

3 Dataset and Features

This project uses a dataset from [2], which contains 10,000 optimized topologies all at a resolution of
40x40 pixels, which were generated directly from [6]. Figure 3 below shows the input images after 5
iterations (at left) of the costly topology optimization and the ground truth labels (at right) after 100
iterations of topology optimization. The goal is to build a neural network to speed up the process of
getting from iteration 1 to 100.
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Figure 3: Each of the 10,000 datapoints contains iterations 1 through 100 from the topology opti-
mization; iterations 5, 50, and 100 are shown here.

The dataset was split into 8,000 training set images and 1,000 each for dev and test sets. The 8,000
train set images were additionally augmented with 32,000 more optimizations by doing horizontal
and vertical flips and 90 degree CW and CCW rotations, shown in Figure 4.
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Figure 4: The data was flipped horizontally, vertically, and rotated 90 degrees CW and CCW shown
here for one datapoint.

4 Methods

This project implemented two neural network architectures. A shallow neural network to determine
baseline performance and a deep neural network that used the U-net[1] architecture.

The shallow neural network, shown in Figure 5, has two convolutional/relu/maxpool layers separated
by a dropout layer. The final layer simply flattens the data and has sigmoid activation function to
predict the outputs.
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Figure 5: Shallow neural network architecture.

The deep neural network, shown in Figure 6, follows the U-net structure [1]. There are 2 conv/relu
layers at each step of the inverted pyramid structure. To reduce or encode the image size it down-
samples with max pool layers. Following downsampling, upsampling is performed and layers are
concatenated across the architecture. There are two dropout layers in both the encoding and decoding
phases for regularization. The output layer flattens and uses a sigmoid activation function at the
output. The U-net architecture allows for important features of the image to be passed through the
network, while reducing the overall number of parameters the model needs to process.
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Figure 6: Deep neural network architecture.

The loss function used in both models is the pixel-wise cross-entropy loss to classify each pixel into a
material or void category.

5 Experiments/Results/Discussion

Hyperparameters were tuned throughout the project. The learning rate seemed to be particularly
important and a rate of 0.0001 seemed to give the best results. Any rate larger than this tended to



diverge after a number of iterations and rates smaller than this didn’t show significant performance
improvements. A mini-batch size of 64 was chosen because it gave a steady, although expectedly
noisy, decline in cost. Different keep-probabilities were tried out to regularize the model, with 0.7
proving to be too small and 0.5 proving to provide decent performance.

The primary metrics used in this study were binary pixel-wise accuracy and intersection-over-union,
whose equations are shown in Figure 7.
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Figure 7: IOU and binary pixel-wise accuracy metrics used to evaluate the models.

The table in Figure 8 shows the performance of the two models, with and without data augmentation.
All 4 of these models trained with the same hyperparameters to make the analysis as congruent as
possible. As you can see there was a consistent improvement in performance, for both test accuracy
and IOU, as you move down the columns to models that are increasingly more complex and were
trained on increasingly more data.

Shallow NN 84.9 91.8
Shallow NN w/ data 87.7 93.5
augmentation

Deep NN 90.1 94.8
Deep NN w/ data 91.8 95.7

augmentation

Figure 8: Deep neural network architecture.

The ultimate test accuracy and IOU of 91.8% and 95.7% show that the model was able to closely
predict the ground truth labels. In this case, this would be an acceptable accuracy and IOU because the
topology would need to be smoothed and slightly modified for manufacturability after optimization,
so getting the topology ’close’ would be fine. Then the designer could run a final simulation (typically
a finite element stress analysis) to double check the model (this would have to happen even if the
topology optimization matched perfectly to the ground truth labels).

The regularized model had significant performance improvements as shown in Figure 9, which is
especially noticeable in later training epochs. This suggests that the model was definitely overfitting
slightly to the training data. The keep probability in the dropout layers had to be at least 0.5 to give a
noticeable improvement to the cost.
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Figure 9: Unregularized and regularized cost over number of epochs for the deep neural network.
Green line is dev set loss and blue line is train set loss.



Batch normalization was tried in both models but did not give performance improvements and greatly
increased the dev set cost in all models. As you can see in the pictures below the sigmoid output
does not seem to closely match the ground truth labels, especially for the structure on the right. It is
presumed the some of the structures with *fine grained features’ (i.e. features like thin connections
or small holes) got blurred out of the picture so the model had a harder time predicting their exact
structures.

Figure 10: Batch normalization showing sigmoid output predictions and ground truth labels for 2
structures.

Overall, it was impressive to watch the model predict the geometry over time. It seemed like the
model made course refinements in the earlier epochs and was just working on fine tuning in the later
epochs as shown below in Figure 11

Figure 11: Deep neural network predicted structures for epochs 5, 10, 20, 30, 40, and 50.

6 Conclusion/Future Work

In conclusion, a neural network was able to give good approximations of structural topologies. The
models had the most difficulty in classifying the fine-grained features of the structures, and were
able to learn the course approximation much more quickly. Neural network applications to topology
optimization have potential to be further refined in the future.

Ultimately, beyond the scope of this class, I would like to investigate if we’re able to implement this
model to remove the topology optimization entirely and just input the forces and boundary constraints
to output the topology. I think it would be interesting to see if the model would still be able to predict
the topology or how close it could get. Unfortunately, that was one too many things to try for this
class.

In general I think there is more potential to use machine learning in design, particularly in designing
optimally engineered structures, like vehicles. Topology optimization is just a starting point and has
the potential to form non-intuitive designs in many different fields.

7 Contributions

Anne Alter - did all the work on the project (with lots of help from references!)
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