Exploring Effects of Knowledge Distillation in Model
Compression and Accuracy

Matthew Tan Evan Sheehan
Department of Computer Science Department of Computer Science
Stanford University Stanford University
mratan@stanford.edu easheehan@stanford.edu

Dian Ang Yap

Department of Computer Science
Stanford University
dayap@stanford.edu

Abstract

The field of deep learning is expanding at an unprecedented rate, spurring the
creation of neural networks deeper and more robust than ever before. Unfortunately,
the rapid growth of the size of these models has rendered them unwieldy to construct
and even more difficult to train. As such, we propose a model for the compression
of said neural nets using a teacher-student, knowledge distillation architecture
coupled with a comprehensive network pruning algorithm. Drawing on works
by well-respected figures in the field, such as LeCun, Hinton, and Song Han, we
utilized transfer learning on MobileNet, pre-trained on ImageNet, to fit it to the
Kaggle Cat Dog Dataset (due to computational constraints), and pruned it utilizing
zero density and random layer removal in order to construct a student network.
We then used knowledge distillation to process the outputs of the teacher-student
architecture given a lambda loss, back-propagating the results of this into the
student network. Through this process, we were able to iteratively observe the
benefits of knowledge distillation on a student network (compared to one not using
knowledge distillation) under several sets of conditions, including when pruning
a smaller number of layers or when seeking to minimize the number of trainable
parameters in the student subject to accuracy constraints.

1 Introduction

Current state-of-the-art deep learning models for image recognition algorithms often utilize large and
deep networks. Training such models often requires utilizing multiple GPUs over an extended periods
of time. This computational size requirement, as well as processing time it entails, prevents these
architectures from being run on smaller systems as well as serves as a prohibitive barrier to entry. The
process of distilling information from large networks into smaller ones is an incredibly dynamic field.
Recent research by Song Han (SqueezeNet)7, Bengio (Fitnets)* and Hinton (Knowledge Distillation)?
has explored the potential of creating much smaller networks without substantial losses in accuracy.
In some cases, further post-processing of these networks can match / exceed the larger network’s
performance.

Our goal in this project was to delve into Knowledge Distillation and evaluate its feasibility, accuracy
and effect on the smaller networks. We tested this model on MNIST®4 to check its feasibility and

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

then evaluated it on a larger dataset to prove its scalability. To do so, we retrofitted MobileNet,'3 a
state-of-the-art image classifier that had been pre-trained on ImageNet,'! to the Cat Dog Dataset!'’
from Kaggle by using transfer learning. We then pruned this network using various methods which
will be described in this paper to obtain a smaller, pruned, student network. Subsequently, we used
Knowledge Distillation with these teacher-student architectures to train the student and engage in
back-propagation. Doing so allowed us to both discover and explore the effects of Knowledge
Distillation on various models and hyperparameter settings.

Explicitly, the input to our network is an image. We then use two neural networks, a full-size teacher
network that has already been trained and a pruned version of the teacher (the student), to classify the
image as either a cat or a dog. We then feed the outputs of these two networks into a loss function
that evaluates both and then backpropagates through only the student network to train it.

2 Related work

Multiple approaches to compressing neural networks have been researched over the recent years.
These can generally be split into 3 main buckets. The first involves some form of matrix factorization
using SVD or by flattening convolutions. The second is through weight pruning by removing
unimportant layers, something which was studied by LeCun® in his paper Optimal Brain Damage.
Finally, the last method explores weight quantization, something which was successfully used by
Han et al. to reduce AlexNet by a factor of 35 without substantial loss of accuracy.

Finding a means of effectively and efficiently training these models to retain the accuracy of their
original models has become essential. Hinton proposed the Knowledge Distillation model to solve
this problem which utilizes a weighted average between a Ly, and Ly ,.q and which was shown

to perform with good effectiveness in MNIST. In Teacher We Trust, Shen et al.> presents a more
structured teacher student model and utilized it for pedestrian detection with some success.

Further research has been done for this general model to further improve its usefulness. Kim et al.2
proposed using hints in which an additional intermediary layer provides information on its weights
to the student network. Deep Mutual Learning (Zhang)! was further proposed which utilizes an
ensemble of untrained networks to simultaneously learn and solve the task together. The research
being done in this area presents a promising outlook for model distillation.

3 Dataset and Features

We used 2 main datasets for this project. First is MNIST, the handwritten digits database which has
60,000 images for the train set and 10,000 images for the test set. Pre-processing was handled by
Keras libraries.

The second dataset we utilized was the Cat Dog dataset from Kaggle which contains 25000 high-
resolution labeled images of dogs and cats. We pre-processed this by randomly splitting them into
train and test sets with a (80-20) split. We then resized these images to the size we needed (224,
224,3), which is the standard input size of MobileNet trained on ImageNet. We used this full dataset
to train the teacher model; however, due to computational constraints, we used only a subset of this to
train the student models (1000 Train, 2500 Test).

We also attempted to retrofit the CIFAR dataset into MobileNet using transfer learning. However,
despite multiple attempts, it was not successful (< 0.2) accuracy. We attribute this to the small image
size of the images and the difficulty of scaling said images into the required size/res. for MobileNet.

4 Methods

Following the Knowledge Distillation model, we utilize the Teacher-Student architecture (see Image
1.1) to train the compressed networks. The teacher-student architecture essentially runs the input
in parallel for the teacher and student models and merges their outputs into an additional loss layer
(defined below):

Loss = (1 — A) (Ytrue — ypred) + A * (Yteacher — ypred)

L Depthwise Conv
Block # 1
x12 Depth-wise N Depth-wise
/ \ Cony Blocks Cony Blocks

=3
\ V4

Figure 1: Teacher Student Architecture Figure 2: MobileNet Teacher Student Model

The results of this is then back-propagated to the student but not the teacher, effectively only training
the student model. After some epochs, the student network is trained and can be used on its own.

Building the student network is done by compressing the teacher model via pruning. In this case, we
utilized both zero density as well as random layer pruning. To do so, we summed over the absolute
values of the weights in each convolutional layer in the teacher network and kept track of the number
of weights in the layer which fell below a certain threshold. We then divided this number of weights
in the layer below the threshold by the total number of weights in the layer to get the layer’s zero
density.

Multiple methods were explored over the duration of the project. Below we describe the chronological
order by which we approached this research.

First, we used a simple, 2 layer dense network, each with 10 nodes, for the teacher model and a
1 layer dense network for the student model. After training with A = 0.4, we discovered that the
student network actually presented an increase in accuracy (from 92 to 93 percent).

We then tested the model on CIFAR by applying transfer learning to MobileNet. This was done
by peeling off the last few layers, adding a softmax, and retraining the entire model. We received
>90 percent accuracy on the train set but got less than 20 percent for the test set. Despite multiple
experiments with different hyperparameters and adding various regularization/conv layers, we were
largely unsuccessful with this. After performing a detailed causal analysis on this result, we concluded
that the most likely cause was the disparity on the image sizes and the lack of features that CIFAR
images have in comparison to ImageNet images.

Following this, we returned to testing this model on a more powerful MNIST model. We used a
known Keras model that achieves >99 percent accuracy on the dataset and utilizes 2 CONV layers
and 1 DENSE layer. We then removed one of the CONV layers and utilized the teacher-student
architecture to retrain it. Following this, we searched through a range of loss lambda parameters to
find the effectiveness of the teacher-student architecture. Finally, we attempted to improve this model
by tuning batch size and maintaining this loss lambda.

After getting moderate results from the previous MNIST model, we then decided to run the teacher-
student model on a much larger model. We considered and prototyped on InceptionV3 and ImageNet,
however, we quickly realized the massive computational power necessary to run this model. To
simplify, we then used MobileNet with similar images to ImageNet but with a smaller number of
possible outputs. We used the Cat Dog Kaggle dataset because of the higher resolution images
(similar to those in ImageNet), and because of its small class size. We used the full Cat Dog image
database to train the teacher model, however, once again hindered by the lack of computational power,
we utilized only a subset of this to train the student network.

Hyperparam Brief Description

Number of layers to remove

LB using zero density
Number of random layers to
random
remove
3 5 Whether or not to initialize
pipe_weights

weights of student from teacher.

Batch size of the teacher-student

KBRbatc=eize architecture

KD_Num_epoc Number of epochs for teacher

hs student architecture
Loss Lambda Lambda for loss function
Figure 3: Hyperparameters trained Figure 4: Sample image of cat dog dataset

To evaluate MobileNet, we first retrofitted the last layers in the teacher (including softmax, etc.) to
match the Cat Dog Dataset and then applied transfer learning in order to fit it. This allowed the
teacher to achieve upwards of 95% accuracy on the 5000 examples in the test set. We then removed
layers from it, using various methods to create the student, including zero density, random layers,
etc. We believed that, given the Optimal Brain Damage paper, zero density constituted the most
promising approach for pruning while still maintaining high accuracy. We also decided to explore
random layer pruning as a control/comparison alternative to zero density. Additionally, we evaluated
different ways of weight initialization for the student, including pre-loading the weights from teacher
for the remaining layers that had not been pruned as well as maintaining the randomly-initialized
weights. We then retrained the teacher-student architecture, keeping the teacher’s weights frozen so
that backpropagation was only carried out on the student. Various weightings of the teacher-student
architecture were further explored, including varying the loss lambda parameter and tuning other
hyperparameters (batch size, number of epochs, etc.).

5 Experiments/Results/Discussion

Throughout our testing, the metrics we followed most closely were student accuracy, number of
layers removed, and number of parameters in the student. This was since our project centered
around compressing a network, by both number of layers as well as number of parameters, while still
maintaining the highest accuracy possible for the student. The hyperparameters we focused on tuning
most intently were whether or not to pipe the teacher’s weights into the student before training it, how
many layers to randomly remove or remove via zero density, and the number of epochs and training
set size for the student. This was because, given the sheer volume of diverse student networks we
were required to train to explore all areas previously laid out, our computational resources were a
severely limiting factor. Also, our literary framework directed us to optimize for convergence time
(number of epochs trained) for the students as well.

In our initial tests conducted on the MNIST dataset, we observed that using different lambda loss
parameters allowed for faster convergence and even higher accuracy than simply learning from the
ground truth. Based on our data, we hypothesize that a lambda loss somewhere between .4 and
.7 seems to be the optimum value for obtaining the highest accuracy marks with this architecture.
Similarly, our testing seems to indicate that a batch size somewhere between 75 and 100 elements led
to the best accuracy results. We hypothesize that having a small loss lambda allows for some form
of regularization against images which the teacher network is unable to classify correctly, allowing
the student network to learn from much easier dataset images. Also, an interesting extrapolation of
our data seems to be that fully trusting the teacher network appears to negatively affect the accuracy
of the model. This could be an encouraging sign, given that it implies that, after a certain point in
training, the student is more than capable of "standing on its own legs" in an efficient and accurate
manner.

To briefly mention our testing with the CIFAR dataset, we observed that we were unable to effectively
undertake transfer learning to train the teacher model, likely, in our opinion, do to the fact that
CIFAR images are much smaller, and also of a much lower resolution, than ImageNet photos, which
MobileNet was initially pre-trained on.

Moving to our largest and most robust implementation of the concept, which utilized the MobileNet
architecture and the Kaggle Cat Dog dataset, we observed that knowledge distillation appeared to
work exceptionally well, compared to standard pruning, when the number of layers removed was
decreased by only a small number amount. However, it seemed to have detrimental effects when
the proportion of layers removed from the teacher increased to a significant fraction of the overall
size of the network. We hypothesize that this may have been due to the fact that, after extensively
pruning the teacher to obtain a student, the two networks may process images in such a different
manner that it requires far more than 3 epochs of training to observe the lambda loss imparting a net
benefit to the student, as the architectures gradually begin to work cooperatively. Similarly, since we
initialized many of the student networks to possess the same weights as the teacher network (ie each
respective layer possessed the same weights as its corresponding layer in the teacher network), we
hypothesize this may have amplified the distance which the student network was required to traverse
via backpropagation in order to reach the optimum weights. On an intriguing note, we observed
that, when pruned via random layer removals, it appeared as though the student network utilizing
knowledge distillation saw a much more appreciable increase in accuracy with the increase of the
number of parameters in the network than its counterpart, or, conversely, it functioned at a much
higher accuracy than the student not using knowledge distillation when both models possessed the
same number of parameters. We are of the opinion that this finding may tacitly support the theory that
knowledge distillation allows a student to be compressed to an even larger degree than one not using
knowledge distillation, all the while permitting it to still attain better accuracy marks. Once again, we
would caution against undue extrapolation in this case given the sample size of the testing data.

Tangentially, we observed that certain random layers that were removed seemed to possess more
gravity in altering results when they were taken out than others, something which requires additional
steps to rectify with the results we previously noted. Additionally, we saw that, in general, knowledge
distillation seemed to cause the student using it to converge at a much faster rate than its counterpart
(or it required fewer epochs to converge), but the student using knowledge distillation also experienced
appreciable drops in accuracy at a much faster pace than the student not using it as the number of
layers removed began to increase. We hypothesize that, given the number of epochs our computational
constraints relegated us to, we cannot sufficiently draw any broader conclusions on this specific
subtopic. Ideally, we would have run far more than 3 epochs per student with the full dataset to
properly train the models, but GPU and cloud processing limitations hindered our ability to fully
explore the space of possible avenues comprehensively. However, we feel our observational results
span a diverse and dynamic range of the pruning, knowledge distillation, and model compression
spaces and provide a robust undergirding for further investigation in said fields.

6 Conclusion/Future Work

Limited computational power has constrained the extensiveness of our results. However these results
present a strong case for the possibility of compressing models without much loss of accuracy,
and different methods of removing layers were seen to impact the accuracy of our student models.
Running the model over the range of loss-lambdas for the Cat Dog Dataset may show us much
more interesting details. Further, the Cat Dog Dataset, while consisting of large images, is relatively
small in size. Testing the model on larger datasets such as ImageNet may yield much more useful /
interesting results, though it will require far more computational power than we currently have access
to. Finally, a technique discussed in the related works but not explored in this was the use of hints
and the controlling of both their position and number. In some ways, pre-loading the weights is some
form of hint, although a possible extension would be to run it on randomly initialized weights and see
what the effect of this would be.

Accuracy vs Number of Layers Removed in Cat Dog Dataset Random

Accuracy vs Number of Params in Cat Dog Dataset Random

—— Knowledge Distillation loss lambd = 0.7 - Base Model: 3,252,034 params
No Knowledge Distillation Random 2: 2,922,178 / 1,878,338 params.
Random 5: 1,271,874 / 1,533,698 params.
Random 7: 782,722 / 782,722 params
Random 11: 279,042 / 145,922 params

0.70 loss_lambd = 0.7

— Knowledge Distillation loss_lambd = 0.7
No Knowledge Distillation
—— Teacher Model

°
>
&

Accuracy

°
o
8

500000 1000000 1500000 2000000 2500000 3000000 2 4 6 8 10
Number of Params Number of Layers Removed Randomly
Figure 5: Accuracy vs Number of params for Figure 6: Accuracy vs Number of Layers Re-
Random moved for Random

Accuracy vs Number of Epochs in Cat Dog Dataset Zero

Accuracy vs Number of Layers Removed in Cat Dog Dataset Random

—— KD Min Layer 2
KD Min Layer 5

—— KD Min Layer 7
—— KD Min Layer 11 09 Base Model: 3,252,034 params
—— Min Layer 2 Random 2: 2,922,178 / 1,878,338 params
o0 Min Layer 5 Random 5: 1,271:874 / 1,533,698 params
Random 7: 782,722 / 782,722 params
Min Layer 7 Random 11: 279,042 / 145,922 params
e —— Min Layer 11 loss_lambd = 0.7
R = 08

0.65

— Knowledge Distillation loss_lambd = 0.7
No Knowledge Distillation
—— Teacher Model

Accuracy

0.60

100 123 430 L3 Numb; SfUEpn(hs 223 230 215 300 : ¢ Number of I.:yers Removed Ranﬂo:ﬂy *
Figure 7: Accuracy vs Number of Epochs for Figure 8: Accuracy vs Number of Layers Re-
Zero Density moved

7 Contributions

Evan Sheehan -
1. Individually designed and built both the teacher and student architectures for MobileNet in
Keras
2. Wrote the code for transfer learning the teacher (MobileNet) network
3. Conducted the transfer learning on the teacher
4. Wrote code to load the Cat Dog Dataset and format it for Keras
5. Trained the teacher network/wrote the code to train it on the Cat Dog Dataset
6. Built the pruning algorithm that processed the requested layers for removal, including
random layer pruning, zero density pruning, and specific layer removal
7. Wrote the code and designed the program that actually pruned the teacher model - builds
brand new student models, block-by-block, in code via an automated process
8. Wrote the code for piping the teacher’s weights into the student
9. Tuned hyperparameters for training the teacher/students
10. Collaborated with Matthew Tan to train the students locally/on AWS and tune
hyperparameters
11. Collaborated with Matthew Tan to merge the Keras models/teacher/student with the
knowledge distillation testing harness and file management systems

Matthew Tan -
1. Trained, built and tuned MNIST models for both proof of concept and final models.
2. Wrote testing harness scripts for quick evaluation
3. Wrote Knowledge Distillation harness for models.
4. Analyzed and plotted data.
5. Wrote scripts for proper logging including: saving weights, various print statements and
reloading networks.

6. Tuned hyperparameters for the Cat Dog Dataset.
7. Attempted to apply transfer learning for the CIFAR dataset and tune hyperparameters.

Dian Ang Yap
1. Extracted models from literature review
2. Analyzed existing models and categorized such models based on strengths and weaknesses
3. Experimented with channel pruning by manually removing specific channels, which can be
continued in future works
4. Adopted keras Surgeon model and experimented on dataset to rank channels or layers to
prune
5. Tuned Keras Surgeon with Matthew Tan’s weights, which can be further developed in
further directions

References

All works are cited the first time they appear, per standard citation style
Special thanks to Guillaume and Yoann for there mentorship and guidance.

[1] Ying Zhang, Tao Xiang, Timothy M. Hospedales, Huchuan Lu, “Deep Mutual Learning.”, Dalian
University of Technology, Queen Mary University of London, University of Edinburgh, 2017.

[2] Jaeyoung Kim, Mostafa El-Khamy, Jungwon Lee, “BRIDGENETS: STUDENT-TEACHER TRANSFER
LEARNING BASED ON RECURSIVE NEURAL NETWORKS AND ITS APPLICATION TO DISTANT
SPEECH RECOGNITION.”, Samsung Semiconductor, Inc. USA, 2018.

[3] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, “Distilling the Knowledge in a Neural Network.”,
Google Inc. 2015.

[4] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou , Antoine Chassang, Carlo Gatta and
Yoshua Bengio, “FITNETS: HINTS FOR THIN DEEP NETS", Universitat de Barcelona, Universit’e de
Montr’eal, Ecole Polytechnique de Montr’eal, Centre de Visi’o per Computador, ICLR 2015.

[5] Jonathan Shen, Noranart Vesdapunt, Vishnu N. Boddeti, and Kris M. Kitani, “In Teacher We
Trust: Learning Compressed Models for Pedestrian Detection.”, Carnegie Mellon University, Michigan State
University, 2016.

[6] Yann Le Cun, John S. Denker, and Sara A. Solla, “Optimal Brain Damage.”, AT and T Bell Labo-
ratories, Holmdel, NJ, 07733.

[7] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashra , William J. Dally, Kurt
Keutzer, “SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND
<0.5MB MODEL SIZE.”, DeepScale and UC Berkeley, Stanford University, ICLR 2017.

[8] MNIST Dataset: Yann Le Cun, http://yann.lecun.com/exdb/mnist/

[9] CIFAR-10 Dataset: Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton, https://www.cs.toronto.edu/
kriz/cifar.html

[10] Cat-Dog Dataset: https://www.kaggle.com/c/dogs-vs-cats

[11] ImageNet Dataset: http://www.image-net.org/

2] Keras Codebase: https://keras.io/

3] MobileNet Keras Implementation: https://keras.io/applications/#mobilenet

4] MNIST Keras Implementation: https:/keras.io/datasets/#mnist-database-of-handwritten-digits
5] Github Repository: https://github.com/mratan1/CS230-Final-Project

