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Abstract

We investigate deep learning techniques to predict stock movement based on Form
8-K transcripts. We explored a hybrid model that combined various embeddings
with a feed-forward network and LSTM. Our best model predicted whether or not
a stock price rose or fell the day following the Form 8-K transcript’s release with
an accuracy of 0.6208, significantly better than our Naive Bayes baseline.

1 Introduction

Our paper seeks to predict event-driven share price of publicly traded companies. Share price typi-
cally reflects the health of a business and serves as an insightful economic indicator for the viability
of the overall economy.

Accordingly, events like mergers, bankruptcies, change in management, and asset movements im-
pact a stock’s share price. All of these events are captured in Form 8-K documents filed with the
SEC. With the advancements in computing the past decade has seen, computers are now signifi-
cantly more involved in the financial world. Our project seeks to use novel deep learning and natural
language processing (NLP) techniques to more efficiently predict stock price movements resulting
from these events.

2 Data and Features

2.1 Non-Text Features

Our non-text features include: a 60-day window of previous adjusted close prices, a 60-day window
of the volatility index (VIX), a 60-day window of the S&P 500 data (tracked by the ticker GSPC),
and a many-hot feature vector containing an encoding of a company’s 8-K event types. We used the
difference of the adjusted close price the day after the 8-K was filed and the adjusted close price the
day the 8-k was filed in order to label if a stock went UP or DOWN. We chose this indicator because
of its relevance to the real world — we can purchase or sell stock after an 8-K is released, as many
event-driven funds do.

In pre-processing this data, we excluded any 8-K events that occurred prior to the existence of 60
days of price data for a given stock. Thus, if a company’s stock price history started on 12/1/10 and
they filed an 8-K on 12/5/10, we would exclude that 8-K event. After this processing we ended up
with 179,170 events. The VIX, Price History, and S&P vectors were then concatenated with the
many-hot vector and our Y label. Y = 1 when the price on the following date is higher, and Y = 0
otherwise. This yielded a total of 215 non-text features and 2 classes of output. We split our data
along an 80/10/10 temporal train/dev/test set basis. Since we are dealing with time-series data, we
wanted to avoid a look-ahead bias and split our data so the most recent events would be in test set,
followed by the dev and train sets.



2.2 8-K Transcripts

Below we show a snippet from an 8-K report of
Google, Inc. under the Financial Statements and Ex-
hibits category on February 1, 2005: Bk Transcript Lengths

...Net income on a GAAP basis increased to $204
million or 19.8% of revenues in the fourth quar-
ter of 2004 as compared to $27 million or 5.3%
of revenues in the fourth quarter of 2003. Earn-
ings on a diluted per share basis were $0.71 in
the fourth quarter of 2004 as compared to $0.10 5000
in the fourth quarter of 2003...
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These transcripts vary widely in length, and large se-
quences would result in much larger training times for
our models so we needed to choose a reasonable maxi-
mum length to cut them off at. We would then pad any
8-K transcripts to the max length if they were shorter.
Based on the histogram in Figure 1, we chose 2000 as
the max length because it fully contains a large por-
tion of our data while also limiting the sequence length. We combed our corpus of 8-K transcripts to
generate our vocabulary. We then created an embedding matrix using 300-dimensional pre-trained
word embeddings trained from the Common Crawl [1]. We decided to remove number tokens from
our vocabulary and data because they drastically increased our embedding matrix size. Any token
that was not seen in the pre-trained embeddings was initialized randomly.

Figure 1: Histogram of 8-K Transcript
Lengths

3 Model Structure and Metrics

3.1 Baseline Models

For our baseline, we evaluated two models: a random guess (with probability 50% of a correct
guess) and a Naive Bayes model. Due to the difficult nature of this problem, a baseline of a 50% is
reasonable, as predicting a stock’s movement is difficult even for experts. Naive Bayes is a simplistic
probability model and serves as a fundamental comparison to the more complex models we created.

3.2 Feed-Forward Model

The feed-forward model consisted of using all the non-text features concatenated in vectors and
passing that through a series of fully connected layers. We used an input layer and six layers with
ReLU activation functions for each of the fully connected layers. After the last layer, we used a
softmax layer for binary classification. We also used the Adam optimizer for all variations of our
model.

3.3 LSTM and Feed-Forward Model

For this model, we first passed in the tokens from the 8-K transcripts into the embedding layer. We
also made this embedding layer trainable so that the embeddings are more representative of our prob-
lem. The padding tokens had a corresponding embedding so that our model could potentially gain
insights into transcript length. From the embedding layer, our inputs are passed into a bidirectional
LSTM and the final state of both the forward and backward LSTMs are concatenated. We used an
LSTM because we can process variable lengths of text into a smaller encoding. We also chose to use
a bidirectional LSTM to avoid any bias towards the beginning or end of the transcript. This section
of the model is shown in red in Figure 2. This concatenated final state is then concatenated with the
non-text features and passed into the feed-forward network described above.



3.4 LSTM, Ticker Embedding, and Feed-Forward Model

For this model, we made an addition to take the ticker into account. The ticker represents the
company of the stock e.g. GOOG. We found that certain tickers tend to correlate with each other
as well as the S&P. For example, two companies in the same industry would most likely see similar
trends when an event related to that industry occurs. In order to add this behavior into our model, we
created a new ticker embedding matrix initialized randomly for all tickers in our dataset. We would
pass each ticker input through this embedding layer, and the embedding layer would learn the trends
of that ticker. This addition is shown in blue in Figure 2.
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Figure 2: LSTM, Ticker Embedding, and feed-forward model.
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3.5 Hyperparameters

We chose a learning rate of 0.00005 for all of our models except the feed-forward model which
had a learning rate of 0.001. The models utilizing the language performed better with a very slow
learning rate. When we used a higher learning rate, we saw train loss rise at later epochs. We also
did not need to implement learning rate decay since we used the Adam optimizer. We applied 0.2
dropout to all layers not including the fully connected layers, which are shown in yellow in Figure
2. We chose not to apply dropout to these layers because our feed-forward model, which did not
include any features from language or tickers, was unable to overfit our training set. Therefore, we
knew this model did not have the complexity to warrant the application of dropout. We used a batch
size of 256, which was the highest batch size we could use without running into memory issues. We
also shuffled these batches before training and performed batch norm.

3.6 Evaluation Metrics

We evaluated our models using the following metrics: accuracy, precision, recall, and F1 score.
The precision, recall, and F1 score were all calculated per each class (UP, DOWN). From a trading
perspective, we want to optimize accuracy, as this tells us how well our model performs on both UP
and DOWN samples. If our fund were long-only, we would seek to optimize precision for the UP



class since we want a model that is correct more often when it predicts UP. On the other hand, if our
fund were short-only, we would seek to optimize precision for the DOWN class so that we are more
correct on predicting DOWN.

4 Results

The results of our experiments are shown in Table 1 below. Our tickers + LSTM + feed-forward
model had the highest accuracy, UP precision, UP recall, and UP F1 score demonstrating our model’s
significant predictive value over the baseline. For financial prediction problems, a model that is over
55% accurate is typically considered successful, so our accuracy of 62% is a great result for this

problem.
Table 1: Model F1 and EM Dev Set Scores
Model Accuracy | UP Precision | UP Recall | UPF1 | DOWN DOWN | DOWN F1
Precision Recall

Guess

: 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Baseline
Naive Bayes 0.4940 0.5016 0.1853 | 0.2706 | 0.4921 0.8109 0.6125
Baseline
Feed-Forward 0.5754 0.5685 0.5967 0.5691 0.5821 0.4304 0.4948
LAt & 0.6083 0.6430 0.5953 0.6183 0.5745 0.4047 0.4749
Feed-Forward
Tickers +
LSTM + 0.6208 0.6758 0.6032 0.6375 0.5672 0.3968 0.4669
Feed-Forward

Below in Figure 3, we can see the smoothed accuracy (with a constant of 0.7) evaluated on the dev set
over 10 epochs of our models. The feed-forward model’s lack of complexity limited its capabilities
of learning more over multiple epochs, while the other models had the requisite complexity to learn
over multiple epochs.

Figure 3: Dev Accuracies on LSTM, Ticker Embedding, and Feed-Forward Model
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Since our model performed the best on the UP metrics, it could feasibly be used for a short-term,
long-only, momentum-based trading strategy. Many hedge funds use event-driven strategies and
may trade around 8-K releases. Tools like ours can be used to help create probabilistic prediction

models that assist fund managers in the trading process.




As we evaluate our results as the difference between the close price the day the 8-K is released and
the following day, our model is able to detect the short-term momentum a stock derives from an 8-K
release in the market using both our text and non-text features.

The high UP precision signifies that when our model outputs a positive prediction, the real movement
of the stock tends to match our model close to 70% of the time. If we were a fund and our model
output UP, we would open a long-position in the given stock.

One interesting note is on the performance of our baseline Naive Bayes model. Our Naive Bayes
model has a very high DOWN recall. This is likely due to the fact that our model is not detecting
many false positives. Thus, this baseline model will be highly biased to predict DOWN for the
movement of a stock price. This is indeed the case and is validated by the very low UP recall,
meaning that the model predicts a large number of false negatives.

An example of a win for our tickers + LSTM + feed-forward model comes from the following report
filed by Netflix (NASDAQ: NFLX) on April 17, 2003. The feed-forward model predicts DOWN
for this event, likely due to the fact that the S&P 500 data was trending downwards. However,
our tickers + LSTM + feed-forward model predicts the correct value of UP, likely due to instances
similar to the following text segment:

“According to Reed Hastings, founder and CEO of Netflix, ‘The Company broadly
outperformed its financial expectations for the quarter. Our strategic focus on im-
proving the Netflix user experience, which produced record low churn and a lower
gross margin this quarter...””

This qualitative data segment shows that our model’s NLP feature augments it ability to correctly
predict price movement. Our model is likely able to learn the relationships between various words in
a given context and make a prediction based on similar sentiments in the training data. In particular,
we note that our model might be attributing positive sentiment to phrases like “improving [...] user
experience” and “low churn”. Both of these text segments reflect a positive outlook on the company,
and our model is likely picking up on phrases like this to help in its decision-making process. The
recognition of these language features improves the accuracy and robustness of our model, reflecting
its potential feasibility to be used in practice.

6 Future Work and Conclusion

If our team had another 6 months to work on the project, we would focus on improving a few aspects
of our model.

First, we would implement a feature that would allow us to parse the Financial Statement events
and compare the numbers in the 8-K to analyst expectations via earnings surprise. The EPS sur-
prise plays an enormous role in a given stocks momentum, especially for a short-term, event-driven
strategy.

Second, we would try to account for transaction costs. We could model transaction costs as a fixed
percentage fee of our overall invested capital. We could calculate the number of long positions
recommended by our model, compute the average notional trade size, multiply the two together and
subtract a percentage of this as a trade fee. We would also want to run more backtests and determine
metrics like Sharpe Ratio, Max Drawdown, and PnL, before implementing this as a live trading
Strategy.

Third, we could experiment with using attention to find relationships between different 8-K tran-
scripts for a more holistic model. Finally, while we tuned our hyperparameters, we would allocate
more time to this task. Hyperparameter tuning can very time-intensive and finding the optimal hy-
perparameters can be quite difficult.

Overall, our model successfully demonstrates the applications of NLP and deep learning to the
event-driven trading of equities. We believe that our project is a stepping stone to further research
in the area and look forward to the development of future NLP and deep learning models.



7 Contributions

Wesley: Implemented the three models. Worked on generation of word and ticker embeddings.
Tarek: Pre-processed data, added Tensorboard support, and implemented metrics.

Kapil: Implemented baseline (with metrics) and tuned hyperparameters. Generated poster content.
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