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Abstract— Simulation is an appealing option for validating
the safety of autonomous vehicles. Generative Adversarial
Imitation Learning (GAIL) has recently been shown to learn
representative human driver models. These human driver mod-
els were learned through training in single-agent environments,
but they have difficulty in generalizing to multi-agent driving
scenarios. We argue these difficulties arise because observa-
tions at training and test time are sampled from different
distributions. This difference makes such models unsuitable for
the simulation of driving scenes, where multiple agents must
interact realistically over long time horizons. We extend GAIL
to address these shortcomings through a parameter-sharing
approach grounded in curriculum learning. Compared with
single-agent GAIL policies, policies generated by our PS-GAIL
method prove superior at interacting stably in a multi-agent
setting and capturing the emergent behavior of human drivers.

I. INTRODUCTION

Validating the safety of autonomous vehicles represents
an unsolved yet crucial challenge for regulators and man-
ufacturers alike. Autonomous driving systems are typically
evaluated on real-world drive tests, which are expensive,
time-consuming, and potentially dangerous. Furthermore, it
is likely infeasible to build a statistically significant case for
the safety of a system solely through real-world testing [1],
[2]. Validation through simulation provides a promising
alternative to real-world testing, with the ability to evaluate
vehicle performance in large numbers of scenes safely and
economically. Simulations must accurately reflect real-world
driving to be useful, and therefore require realistic models
of human drivers to govern the behavior of non-autonomous
vehicles that occupy the roadway.

Imitation learning (IL) represents a promising avenue for
learning models of driver behavior from real-world data.
Behavioral cloning, a variant of imitation learning that relies
on a supervised learning procedure, is easy to implement
but tends to perform poorly in practice due to a problem
known as covariate shift [3]. Inverse Reinforcement Learning
(IRL) approaches formulate the imitation learning task as a
Markov Decision Process (MDP) with a stationary dynamics
model, which can be solved approximately using batch policy
optimization [4]. IRL addresses the covariate shift problem
by learning a cost function and allowing the agent to interact
with the environment while training. As a result, the agent
encounters similar states during training and testing, which
in practice enables the agent to better learn the consequences
of—and correct for—its mistakes.

Imitation learning approaches have been shown to success-
fully learn human driving policies for individual vehicles in
car-following and highway-driving contexts [5], [6]. However,
when evaluated in a multi-agent setting, the policies learned

through single-agent imitation learning fail to exhibit realistic
behavior, rendering them inadequate for use in simulation.
As we argue later, this deterioration in performance occurs
because transitioning from single-agent to multi-agent settings
effectively reintroduces the covariate shift problem.

We derive an algorithm that addresses the deficiencies
of single-agent imitation learning for learning human driver
models. We extend Generative Adversarial Imitation Learning
(GAIL) [7] and Parameter Sharing Trust Region Policy
Optimization (PS-TRPO) [8] to enable imitation learning
in the multi-agent context, yielding a new algorithm called
PS-GAIL. PS-GAIL generates policies capable of controlling
multiple vehicles simultaneously, enabling the simulation of
complex roadway scenes.

The effectiveness of the proposed PS-GAIL method is
demonstrated by comparing the performance of its learned
policies to single-agent policies learned through GAIL. PS-
GAIL policies are shown to generate driving trajectories that
better match those of human drivers. Furthermore, vehicles
driven by PS-GAIL policies are shown to interact with each
other in a more stable manner over long horizons, and they
are less prone to the collisions and off-road events that often
arise during interactions between single-agent GAIL policies.

II. BACKGROUND
A. Markov Decision Processes

An infinite horizon MDP is defined by the tuple
(S, A, T,R,~), where S is the state space, A is the action
space, T is the transition model, R is the reward function,
and -y is the discount factor. The reward function R provides
the rewards received while interacting in the environment,
where R(s,a, s’) denotes the reward for transitioning from s
to s when action a is taken. The transition model 7 (s’ | s,a)
gives the probability over next states given action a taken in
state s. The discount factor governs how much future rewards
are valued relative to immediate rewards.

A stochastic policy, # : S — P(A), maps each state
to the probability of taking each action. The sum of dis-
counted rewards, or return, from state s; is defined as
gt = ZZO:O fyer_kH, where t is a time index, and r; is
the corresponding reward. The objective in an MDP is to
find a policy that maximizes the expected return, or value,
of each state V. (s) = E,[g; | st = s].

B. Imitation Learning

The goal in imitation learning (IL) is to learn a policy
m that imitates an expert policy mg given demonstrations
from that expert [9], [10]. A demonstration is defined as
a sequence of state-action pairs that result from a policy



interacting with the environment: d = {s1, a1, S2,as,...}.
The reward function is typically assumed to be unknown.
The state-occupancy distribution is defined as:

pr(s) =1 =) _7'p(ss = 5| m), 0))
t=0

which gives the average discounted probability of the agent
being in state s. The supervised learning approach to imitation
learning, behavioral cloning (BC), learns a policy by mini-
mizing some loss function ¢ over the set of demonstrations
with respect to the policy [10]:
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During training, behavioral cloning samples states from
the state-occupancy distribution of the expert, p.,. However,
when interacting with the environment, the policy samples
states from the state-occupancy distribution of the learned
policy, pr,,,- This change in distribution between training
and test time is referred to as covariate shift [3], and results
in the agent making cascading errors.

Allowing the agent to interact with the environment during
training time addresses the underlying cause of covariate shift,
but this interaction requires a reward function since the agent
may encounter states not contained in the training data. We
focus on Generative Adversarial Imitation Learning (GAIL)
due to its scalability, low sample-complexity as measured in
expert demonstrations [7], and previous success in learning
human driver models [6].

GAIL formulates imitation learning as the problem of
matching the state-action occupancy distribution of the
expert policy. Ho et al. [7] show that generative adversarial
networks can be used to approximately accomplish this
task. A discriminator Dy, parametrized by i learns to
distinguish expert from non-expert behavior, while a policy
Ty, parameterized by 6 attempts to emulate that behavior. In
the case where D, represents the probability the state-action
pair came from 7g, the GAIL objective is given by [11]:

min max E._ log Dy(s,a)+
LI (3)
Er, log(1 — Dy(s,a)).

Minimizing different divergences between state-action
occupancy distributions yields different objectives. We use the
Wasserstein distance [12] because it mitigates the vanishing
gradient problem observed when minimizing Jensen-Shannon
divergence [12]. The objective becomes:

mmin max Ery[Dy(s.0) ~ B, [Dy(s,0)

where the critic, D, learns to output a high score when en-
countering pairs from 7, and a low score when encountering
generated pairs. The output of the critic Dy (s,a) is used
as a surrogate reward whose value grows larger as actions
sampled from 7y look similar to those chosen by experts.
After performing rollouts with a given set of policy
parameters 6, surrogate rewards 7 (o, a; 1) are calculated and
Trust Region Policy Optimization (TRPO) [13] is used to

perform a policy update. TRPO is used because it can better
handle the high variance of the non-stationary reward from
the critic. Although 7(0, ;1) may be quite different from
the true reward function optimized by experts, it can be used
to drive 7y into regions of the state-action space similar to
those explored by 7g.

GAIL effectively addresses the problem of covariate shift
provided that the training and testing environments are
identical; however, this is not the case when learning human
driver models in a single-agent setting and deploying them
in a multi-agent setting. During test time, the policy observes
nearby vehicles acting differently than during training, and
again makes small errors that compound over time. In this
paper, we explicitly formulate learning human driver models
as a multi-agent problem in order to address this discrepancy.

C. Multi-agent reinforcement learning

Centralized multi-agent RL traditionally requires learning a
policy 7 mapping from a joint observation space O € RO*M
to action space A € RA*M_ Here O is the dimensionality
of a single observation, M is the number of agents, and
A is the dimensionality of a single action. Centralized
approaches grow rapidly in computational complexity as
the number of agents increases. Provided that the pool
of agents is homogeneous (i.e., each policy must perform
essentially the same mapping, O — A), the joint distribution
7 = plag,...,am | 00,...,0p) can be factorized as
11, p(a; | 0;), which scales linearly with number of agents.

Gupta, Egorov, and Kochenderfer introduced an algorithm
called Parameter Sharing Trust Region Policy Optimization
(PS-TRPO), which is a policy gradient approach that com-
bines parameter sharing and TRPO [8]. PS-TRPO was shown
to produce decentralized parameter sharing neural network
policies that exhibit emergent cooperative behavior without
explicit communication between agents. PS-TRPO is highly
sample-efficient because it reduces the number of parameters
by a factor of M, and shares experience across all agents.
Notably, PS-TRPO still allows agents to exhibit different
behavior because each agent receives unique observations.

For a policy mp with parameters 6, PS-TRPO performs an
update to the policy parameters by approximately solving the
constrained optimization problem:

mo(a | o)
— A
ror (@] o) (%) ®)

subject to  E,[Dxr (o, (- | 0)||mo(- | 0))] < Akr,

where 7y, is a rollout-sampling policy and Ay, (0,a) is an
advantage function quantifying how much the value of an
action a taken in response to an observation o differs from
the baseline value estimated for 0. D, is the KL divergence
between the two policy distributions, and A, is a step size
parameter.

maximize ]EO"IN’T%
0

III. APPROACH

We propose an extension to GAIL enabling the simultane-
ous control of multiple human driver models. The following
subsections describe the multi-agent driving problem, and
detail our approach for combating its associated challenges.



Algorithm 1 PS-GAIL

Input: Expert trajectories 7 ~ mg, Shared policy param-
eters ©p, Discriminator parameters 1)y, Trust region size
Agr,
for k< 0,1,... do
Rollout trajectories for all agents 7 ~ 7y,
Score 7 with critic, generating reward 7(s;, a;; )
Batch trajectories obtained from all the agents
Take a TRPO step to find 7y,  , maximizing Eq. (5)
Update the critic parameters ¢ by maximizing Eq. (4)
end for

A. Problem Formulation

In line with recent work in multi-agent imitation learning
[14], we formulate multi-agent driving as a Markov game
[15] consisting of M agents and an unknown reward function.
We make three simplifying assumptions:

1) Homogeneous agents: agents have the same observa-

tion and action spaces:

O; =0;j and A; = A; V agents ¢, j.

2) Independent rewards: the reward function is not
shared; it depends only on the action of each agent and
the state, and not on the actions of other agents or the
next state. In particular, agents are not cooperative:

Ri(s,a1,...,a4,...,a5) = Ri(s,a;).

3) Identical reward function: the reward function is the
same for all agents:

R; =R; V agents i, j.

These assumptions are idealizations and do not hold for
real-world driving scenes. For example, different vehicles
may permit different accelerations, a driver may only want to
change lanes if other drivers are not doing so, and individuals
may value different driving qualities such as smoothness or
proximity to other vehicles differently. Nevertheless, these
assumptions often do apply approximately, and, as we later
show, allow for learning of realistic driving policies.

B. Parameter Sharing GAIL

A naive approach to learning human driver policies would
be to train a policy in an environment where it controls a sin-
gle vehicle on the roadway and all remaining vehicles follow
a predetermined trajectory. Unfortunately, this approach is
often incapable of producing policies that can reliably control
many vehicles on the same roadway. By introducing such
a controller to other vehicles after training, we reintroduce
covariate shift. As a result, small errors in the behavior of a
single vehicle can destabilize neighboring vehicles, ultimately
leading to the failure of many agents in the scene.

Our proposed approach, PS-GAIL, combines GAIL with
PS-TRPO to generate policies capable of driving multiple
vehicles, enabling more stable simulation of entire road scenes.
Algorithm 1 describes the PS-GAIL approach. We initialize

the shared parameters of the policy and select a step size
parameter. At each iteration of the algorithm, the policy
with shared parameters is used by each agent to generate
trajectories. Rewards are then assigned to each state-action
pair in these trajectories by the critic. Subsequently observed
trajectories are used to perform a TRPO update for the policy,
and an Adam update for the critic. PS-GAIL can be viewed
as a special case of the algorithms presented by Song et al.
[14]. In particular, in PS-GAIL all agents share the same
policy and receive rewards from the same critic.

We represent the policy with a recurrent neural network
due to the high-dimensional observation space, nonlinearity
required in the mapping from observations to actions, and
partial observability of the local driving scene. Partial observ-
ability arises from (i) sensor noise and occlusions and (ii)
unobserved driver latent state in the form of behavioral traits
and intended maneuvers.

Our training procedure must also account for non-stationary
environment dynamics. In the multi-agent setting, the dynam-
ics of the environment change along with the agent policies.
We mitigate this problem by introducing a curriculum, C,
which scales the difficulty of the multi-agent learning problem
during training. Gupta et al. define a multi-agent curriculum
as a multinomial distribution over the number of agents
controlled by the policy each episode: C ~ Multi(M, p) [8].
The curriculum gradually shifts probability mass to larger
numbers of agents. We use a simplified curriculum that
increments the number of controlled agents by a fixed number
every K iterations during training.

IV. IMPLEMENTATION
A. Simulator

In order to learn the policy in an environment with human
drivers, we use a simulator that allows for playing back
real trajectories and simulating the movement of controlled
vehicles given actions selected by a policy. This process
proceeds as follows:

1) The initial scene state is sampled from a dataset of
real driver trajectories. This state includes the position,
orientation, and velocity of all vehicles in the scene.
The trajectory data we use is from the Next-Generation
Simulation (NGSIM) dataset. NGSIM contains highway
driving trajectories for US Highway 101 [16] and
Interstate 80 [17], and consists of 45 minutes of driving
at 10 Hz for each roadway.

2) A subset of the vehicles in the scene are randomly
selected to be controlled by the policy. For single-agent
training only one vehicle is selected, whereas for multi-
agent training M vehicles are controlled by the policy.

3) For each vehicle, a set of features are extracted and
passed to the policy as the observation. Table I describes
the features provided to the policy.

4) The policy outputs longitudinal acceleration and turn-
rate values as the vehicle action. These values are used
to propagate the vehicle forward in time.

5) This process repeats for a horizon of 200 timesteps at
10Hz, corresponding to 20s of driving per episode.



TABLE I: Observation features

Feature

LIDAR Range
and Range Rate

Description

20 artificial LIDAR beams

output in regular polar intervals,
providing the relative position

and velocity of intercepted objects.

Ego Vehicle Lane-relative velocity, heading, offset.
Vehicle length and width.
Lane curvature, distance to left and

right lane makers and road edges.

Temporal Longitudinal and lateral acceleration,
local and global turn and angular rate,
timegap, and time-to-collision.

Indicators Collision occurring, ego vehicle

out-of-lane, and negative velocity.

Leading Vehicle Relative distance, velocity, and
absolute acceleration of vehicle in front

of fore vehicle, if it exists.

B. Policies

We use recurrent neural network (RNN) policies, in all
cases consisting of 64 Gated Recurrent Units (GRUs). The
observation is passed directly into the RNN without any initial
reduction in dimensionality. We use recurrent policies in order
to address the partial observability of the state caused by
occluded vehicles. In the multi-agent setting, a single shared
policy selects actions for all vehicles, following the parameter
sharing approach previously described. Policy optimization
is performed using an implementation of TRPO from rllab
[18], with a step size of 0.1.

We use two training phases for all of the models. The first
phase consists of 1000 iterations with a low discount of 0.95
and a small batch size of 10000 observation-action pairs.
The second phase fine-tunes the models, running for 200
iterations with a higher discount of 0.99 and larger batch size
of 40 000. For the multi-agent model, we add 10 agents to the
environment every 200 iterations of the first training phase.
We use 100 agents in the fine-tune phase for the multi-agent
GAIL models.

C. Critic

The critic acts as the surrogate reward function in the
environment. The observation-action pairs for each vehicle
at each timestep are passed to the critic, which outputs a
scalar value that is then used as the reward for that vehicle.
The critic is implemented as a feed-forward neural network
consisting of (128,128,64) ReLLU units. We implemented the
critic as a Wasserstein GAN with gradient penalty (WGAN-
GP) with a gradient penalty of 2 [19]. Similarly to Li et
al. [20], we used a replay memory for the critic in order
to stabilize training, which contains samples from the three
most recent epochs. For each training epoch of the policy, the
critic is trained for 40 epochs using the Adam optimizer [21]
with a learning rate of 0.0004, dropout probability of 0.2, and
batch size of 2000. Half of each batch consists of NGSIM
data, with the remaining half comprised of data from policy
rollouts. Finally, the reward values output from the critic are
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Fig. 1: Root weighted square error vs. prediction horizon for single and
multi-agent models. The policy trained in a multi-agent setting more closely
resembles the human driver, particularly as the horizon increases.

adaptively normalized to have zero mean and unit variance
prior to being passed to TRPO.

Because the critic is a feed-forward network and operates
on the observations of each vehicle, it is not able to account
for the partial observability of the scene. A recurrent critic
could address this issue, and has been used in other partially
observable settings [22]. We nevertheless use a feed-forward
critic because when using a recurrent critic one must decide
when to output the reward—at each timestep or only at the end
of the sequence. In the former case, the critic outputs large
negative values at the beginning of a sequence when an agent
closely resembles a real driver (i.e., it overfits), which makes
learning difficult. In the latter case, the agent is faced with an
extremely challenging credit assignment problem, receiving
feedback on 200 timesteps of actions only at the terminal state.
Li et al. provide a solution for the every-step reward problem,
but it entails a highly computationally expensive Monte Carlo
sampling procedure [22]. In practice, the feed-forward critic
was sufficient to learn driving policies.

V. EXPERIMENTS

We use GAIL and multi-agent GAIL to learn policies
for two-dimensional highway driving and compare their
performance. We train three of each model and average the
results of 10000 policy rollouts in a 100-agent environment.
We present the average results over these rollouts.

A. Evaluation Metrics

The trajectories generated by the policies are evaluated
against human driving data using Root Mean Square Error



(RMSE) and emergent behavior. For each of m trajectories,
we sample a single rollout and compute the RMSE of each
predicted variable v:

m
RMSE = | - 3 (v,ﬁ“ - ﬁf“)Q, ©)
T =1
where v") is the true value in the ith trajectory at time horizon
t and ﬁt&) is the simulated value for the 7th trajectory at time
horizon ¢. We extract the RMSE in predictions of global
position, lane offset, and speed over time horizons up to 20s.
We used a single trajectory because additional trajectories
did not significantly impact the overall RMSE value.
Emergent behavior was captured by extracting emergent
features such as offroad duration, collision rate and hard brake
rate. We calculate these rates by finding the amount of times
a particular constraint is satisfied, and dividing by the total
number of instances. For offroad duration, our constraint is
when the vehicle is more than 1 m off one edge of the road.
Collision rate is when there is a collision, which is easily
accessible as one of our features. The threshold for a hard
brake event is —3ms™.
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Fig. 2: Emergent values for each model.

B. Results and Discussion

Fig. 1 shows root mean square error results for prediction
horizons up to 20s. These plots indicate that PS-GAIL
captures expert behavior more faithfully than single-agent
GAIL. This performance discrepancy is especially pronounced
for longer prediction horizons, where the errors for single-
agent policies begin to accumulate rapidly.

The superior performance of PS-GAIL is further illustrated
by Fig. 2. These validation results empirically demonstrate
that PS-GAIL policies are less likely to lead vehicles into
collisions, extreme decelerations, and off-road driving. This
serves as further illustration that the PS-GAIL training
procedure encourages stabler interactions between agents,
thereby making them less likely to encounter extreme or
unlikely driving situations.

The difficulty of the multi-agent task scales with the
number of agents controlled in the environment. At what
number of controlled agents does the single-agent policy
deteriorate beyond a usable point? We address this question
in our third set of results. Fig. 3 shows the performance
of the two models as a function of the number of agents
controlled in the environment. For each number of agents, that
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Fig. 3: This plot shows the average RMSE value across all timesteps of
an episode as a function of the number of controlled agents. As the policy
controls more vehicles, single-agent GAIL performance deteriorates rapidly,
while PS-GAIL worsens at a much lower rate.

many agents are replaced in the environment with the policy,
while the remaining agents are left as originally recorded
in NGSIM. The results indicate that while the single-agent
policy deteriorates rapidly, the multi-agent policy declines in
performance much more gradually.

VI. CONCLUSIONS

Validating the safety of autonomous vehicles in the real
world is costly, dangerous, and time consuming. Performing
this validation in simulated environments would help address
these problems, but requires a highly realistic simulator. This
research focused on building human driver models capable
of interacting with other controlled vehicles in a manner
representative of real data.

We proposed to train these models in a multi-agent setting
using a parameter sharing approach that addresses scaling
issues associated with multi-agent learning. Furthermore, we
addressed challenges of instability in the learning environment
through the use of a training curriculum. Experiments
comparing the performance of this multi-agent model with
existing single-agent models indicated that the former exhibits
significantly more realistic behavior, particularly over longer
time horizons.

Future work will investigate methods for improving model
performance, and applying learned driver models. Three
potential methods for improving model performance are
(i) reward augmentation, (ii) applying learning algorithms
that encourage more diverse behavior [11], and (iii) using a
recurrent critic in order to account for partial observability.
Ultimately, the goal in learning human driver models is to
validate autonomous vehicles in simulation, and we hope to
apply these models to that end in the future.

The code associated with this project and relevant videos
can be found at https://github.com/sisl/ngsim_env.
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