Audio Transfer Learning with Voices

Fabian Boemer * Eric Gong *
fboemer@stanford.edu ericgong@stanford.edu

Youkow Homma *
yhomma@stanford.edu

Abstract

The Neural Style Transfer method by Gatys et al. enabled the transfer of style from one image
to another by iteratively changing the raw pixel values of a noisy image. While deep learning
from raw values has been a mainstay in the image domain, this has not been the case in audio.
One key step toward working with raw audio values was the introduction of the WaveNet
model which generates state-of-the art, natural sounding audio by autoregressively predicting
raw audio values. The NSynth model uses the WaveNet model to encode audio in a latent
space that allows for interpolation between different sounds. In this project, we combine the
image-based Neural Style Transfer methodology with the NSynth autoencoder architecture to
investigate a framework for transferring style from one raw audio file to another.

1 Introduction

In this project, we explore a framework for transferring audio style from one audio file to another audio file.
More specifically, our input is two audio files of three seconds, a content audio file z¢ and a style audio file
zg. The output is a new, three-second long audio file x¢ that has the content of z¢ and the style of 5. We are
primarily interested in the case where x¢ is audio of human speech and zg is an instrument. In this way, we
aim to construct understandable human speech that sounds less like a human and more like a specific instrument.
Additionally, we explore the setting where x¢ and zg consist of one or more pitches of the same instrument. We
foresee that this type of audio synthesis could be interesting for applications in electronic music.

2 Related work

Style transfer applied in the audio domain has been attempted under a few guises with many of the most
notable methods summarized by Grinstein et al. in [GDOP17]. One successful methodology is to transform
one-dimensional audio into two-dimensional spectrograms, and then feed the result into the image-based Neural
Style Transfer method by Gatys et al. [GEB15]. This technique was explored by Ulyanov et al. [UL] where audio
was transformed into spectrograms through a short-time Fourier transform and then passed through a texture
synthesizer with random weights. The authors describe this technique as “style transfer by analogy” because it
does not aim to audibly orthogonalize style and content as in the image case.

Mital [Mit17] provided a more comprehensive study of style transfer in the audio domain by exploring different
pre-processing steps for the technique by Ulyanov et al. Additionally, Mital applied neural style transfer on
both the WaveNet decoder and NSynth encoder, similar to the approach we study in this work, but was unable
to achieve meaningful synthesis. We will expand further on key differences between our work and Mital’s in
Section 4.

*Institute of Computational and Mathematical Engineering, Stanford University

Foote et al. [FYR] also discussed incorporating Neural Style Transfer with the WaveNet architecture, but
mentions difficulties with the residual connections and the discretization of audio sample values as reasons for
not pursuing the idea further. We also expand on this discussion in Section 4.

3 Dataset and Features

For this project, our style dataset is the NSynth dataset which was used by the Magenta project [Ten] to train the
NSynth model weights. The NSynth dataset contains single-note pitches generated by neural networks in the
style of various instruments. Each pitch is sampled at 64 kHz, and is between three and four seconds long. We
focus on two acoustic vocal pitches and three synthetic flute pitches in the NSynth test set, as a representative
basis for learning. Figure 2a and Figure 2d show spectrograms of two audio files in the test set. Our content
dataset is a mix of NSynth data, a 1 kHz sine wave sound [Nata, Natb], and a recording of a team member’s
voice. An 8-bit u-law algorithm is used to encode all audio before use in our algorithms.

4 Methods

4.1 NSynth Architecture

WaveNet [VDODZ 1 16] is a generative, deep neural network for raw audio which uses causal, dilated convolutions
to expand its receptive field to yield state-of-the-art, natural sounding speech. NSynth [ERR*17] is an autoencoder
with stacked non-causal, dilated convolutions as the encoder and the WaveNet model as the decoder which
produces encodings in a new latent space for single tones. Interpolation in the embedded space enables blending
of audio samples resulting in, for instance, a blend between a bass and flute sound, or bass and organ sound.

For this project, we use the encoder portion of the NSynth model, depicted in Figure 1. This choice was made for
a few reasons: First and foremost, the WaveNet decoder is autoregressive, meaning predictions are produced
serially with predictions at one time step depending on all previous time steps. This makes working with the
decoder very slow. On the other hand, the NSynth encoder is non-causal, making it much faster. Second, the
encoder architecture is more similar to the VGG-16 model used in Gatys et al. [GEB15] because the input to the
encoder is the raw audio much like how the input to the VGG-16 model is the raw pixels. The input to the decoder
is the encoding of the raw audio, which does not lend itself as nicely to the Neural Style Transfer framework. We
re-purpose the Tensorflow Magenta code to build the encoder and use the pre-trained weights from Magenta for
our project. Further discussions on the code adaptations can be found in Section 7.

4.2 Neural Style Transfer

Our framework is an adaptation of Gatys et al.’s Neural Style Transfer method [GEB15] to the NSynth encoder
described in Section 4.1. The initial values for the generated sound, z, is a linear combination of the content
audio, ¢, and random noise uniformly distributed from [—10_6, 10_6] at each time step.

For the content layer, we considered both the encoding of the NSynth encoder and the final ReLLU activation and
found the final ReLU to retain the content more clearly. In particular, in our vocal examples, we found the white
noise was significantly reduced when silence is present, hence better maintaining the signal-noise ratio.

Unlike Mital [Mit17], we took the style layer values to be the values at the ReLU activation units, rather than the
values at the skip connections of the residual blocks, as demonstrated in Figure 1. We believe that restricting
the value of the layers to non-negative values more closely mimics the Neural Style Transfer method, and
allows for further extensions such as model normalization [GEB15] and instance normalization [UVL17]. As in
image-based Neural Style Transfer, earlier layers of the NSynth encoder capture lower-level information, while
deeper layers capture higher-level information.

Let S(-) denote the style encoding, consisting of 60 layers which correspond to the two ReLU activations for
each of the thirty skip connections. Then, we have that the content cost is

! S (Clac) - Clza))?

Lo(re,Tg) = ——F——
(0, 26) number of entries .
all entries

. We also consider two style costs. The first is based on the Gram matrix due to Gatys et al. [GEB15]:

1
number of entries

Y (G(S(xs)) - G(S(zc)))

all entries

Lsg(zs,zc) = Zw
S

Residual Connections x 30

l

Input Convolution ReLU Dilated Convolution c [ﬁ /

. RelU Convolution Avg Pool Ericodl
Audio 128x 3 Convolution 128x1 1281 g ncoding
A 128x3 B

Figure 1: NSynth encoder architecture. We use the activations denoted by A and B as our content and style layers,
while previous work by Mital [Mit17] used the output of the residual layer, denoted by C, as the content and style
layers.

, Where G is the Gram matrix of the activations. The second style cost is based on the L2 loss:

1
number of entries

Y (S(xs)) = S(zc))?
all entries

Ls, (Ts,2c) = > ws
S

The total loss function is then defined as

L(zc,rs,vq) = Ls(xs,ze) + ale(ze, za)

where « is a hyper-parameter indicating the relative weight of style loss to content loss. We use gradient descent
on x¢ using Adam Optimization to minimize £, generating a sequence x(c?), a:g) ,...of audio at each iteration.
The x5 and x¢ are kept fixed to ensure a faster runtime, and that results do not depend on weights in the NSynth
network. For simplicity, we fixed the optimization to run for 100 iterations, at which a learning rate of 0.05

yielded monotonic decrease in the loss.

5 Experiments and Results

We first investigate the feasibility of style transfer described in Section 4 in two settings: pitch and chords. As
NSynth was trained only on individual, monotone pitches, we expect the most promising results in these simple
settings. We then experiment with speech audio to obtain some preliminary results in the vocal domain.

5.1 Pitch-Pitch

We take a pair of vocal pitches, one high and one low, from the NSynth test set. We set one of the pitches to zg,
and the other to z¢, and minimize the style cost £ = Lg,, using ws = 1/5 for each of the first five encoding

layers, and starting at a:g)) = zc. Empirically, this setting tends to produce a continuous blend between z g

and z¢ from mg) to a:(c? 9. We consider two settings: transitioning from the low pitch to the high pitch, and

transitioning from the high pitch to the low pitch. Figure 2 shows the spectrograms from the produced audio, at
an intermediate iteration 50, and at the 99th iteration. By this final iteration, x¢ and s match quite closely in
pitch, though with a considerably noisier timbre. The spectrograms reflect this noise as less distinct horizontal
stripes. This result also suggests that for single pitches, the encoder used in this way can act as a noisy, but faster
decoder.

At iteration 50, both methods produce a reasonable blend between the low and high audio signals, sounding like
an overlay of the two pitches. The spectrograms show the blended pitches (2b, 2e) contain several overtones,
characteristic of the high pitch (2d) and visualized as many horizontal stripes. The blended pitches also show
somewhat less intensity above 3.5 kHz, as in the low pitch (2a). By iteration 50, the loss has been reduced by
99.7% of the total reduction by iteration 100 (see 7 for losses).

5.2 Chord-Pitch

We also considered the setting of learning a chord. Using the same loss £ = Lg, and weights w; as described in
Section 5.1, we transition from a single pitch to a chord and then back. In particular, a simple sine wave sound
[Nata, Natb] is set as the initial content sound. The sine wave sound is composed of a low pitch and a high pitch,
where the lower pitch is played, a brief silence follows, and a higher pitch is played. This is reflected in Figure
3a, where a noticeable silence is seen at the two second mark. This content is trained against a C Major chord as

s 05 10 15 20 25 30 05 10 15 20 25 30
Seconds. Seconds.

(a) Low Pitch https: (b) Low to High Iter. 50 https: (c) Low to High Iter. 99 https:
//youtu.be/PmYJgGLwvNQ //youtu.be/GmZ6AusgIpU //youtu.be/yivuh1V5y6M

05 10 o 25 30

(d) High Pitch https: (e) High to Low Iter. 50 https: (f) High to Low Iter. 99 https:
//youtu.be/UlhZtyqm2Pk //youtu.be/bXM7JZq-GXk //youtu.be/SBYNES2e4qc

Figure 2: Spectrograms from ascending and descending pitch. Audio is at the posted links.

its style. The C Major chord sound is created by stacking together C, E, and G pitches from the NSynth dataset
into a single audio file. Figure 3 shows that spectrograms from the produced audio, at iteration 30, and at the
final iteration 100. Contrary to the results in Pitch-Pitch, z¢ learns x g within 30 iterations, but begins to lose the
signal after further iterations. That is, the generated audio sound demonstrates the multi-pitch sound of a chord
but then degenerates to white noise in further iterations. This is seen in Figure 3b), where spectrogram shows
only one pitch.

Conversely, the same success was not replicated going from a chord to a single pitch. As seen in Figure 3d - 3f,
the chord sound becomes less and less prominent iteration by iteration. By the end of the 100 iterations, the
generated audio is white noise.

05 10 20 25

15
Seconds.

(a) Learning Chord, Iter. (b) Learning Chord, (c) Learning Chord,
0 https://youtu.be/ Iter. 30 https: Iter. 99 https:
LL3rntJON1Q //youtu.be/bpNE61KLRUYO //youtu.be/T_JC7uQKqZI

05 1o 15 20 25
Seconds

(d) Learning Pitch, Iter. (e) Learning Pitch, Iter. (f) Learning Pitch, Iter.

0 https://youtu.be/ 30 https://youtu.be/ 99 https://youtu.be/
FOQpTKEmCUE jXxJVMcZUT4 c9ycTKgTX1U

Figure 3: Spectrograms from learning a chord and learning a pitch. Audio is at the posted links.

(a) Voice Content, Flute Style, (b) Voice Content, Flute Style,
Iter. O https://youtu.be/ Iter. 74 https://youtu.be/
hmoX15iVxeo 6aKVFQq1ZkM

Figure 4: The following spectrograms show the generated audio after the first iteration and 75th iteration of
training with vocal audio as content and a flute tone as the style. We find that the vocal audio using the Gram
matrix loss with style layers at the first ReL U activation units preserves the content audio temporally (we can still
understand what is being said) but the original frequencies are blurred to other frequencies.

5.3 Vocal Audio

Finally, we consider a preliminary example of vocal audio, which is a team member’s voice as the content, and a
flute tone from the NSynth test set as the style. We utilize the Gram matrix loss with the content layer as the final
ReL.U and the first ReL.U activation in each residual block as the style layers, equally weighted across the 30
layers. We can see from the spectrograms and by listening to the audio in Figure 4 that the content is temporally
preserved and is still understandable, but the frequencies are distorted and blurred. This phenomenon was also
observed when using the Gram matrix, rather than the L2 loss, in the chord-pitch experiments from Section 5.2
(the Gram matrix loss results are at the following links: Iteration 0, Iteration 99). This suggests that the Gram
matrix loss is able to somewhat orthogonalize the content and the stylization.

6 Conclusion/Future Work

In this project, we studied how to adapt the Nsynth encoder into the framework of style transfer by Gatys et al.
[GEB15]. We investigated two loss functions for stylization, an L2 loss and loss based on the Gram matrix. The
former results in a noisy decoder for single pitch styles while the latter preserves temporal content but produces
distorted frequencies. We also investigate using activation values within the residual blocks and find that this
enhances the signal-noise ratio of the generated audio for vocal audio.

One potential avenue for further exploration would be to better understand what is being learned at each layer of
the NSynth encoder as it relates to the notion of style in audio by understanding the implications of matching the
Maximum Mean Discrepancy via the Gram matrix [LCCT17].

Other potential improvements would be to include stabilizing terms to the loss function. Risser et al. proposed
using histogram losses to minimize parameter tuning and blurring of images in the Neural Style Transfer method
[WRB17]. A similar augmentation might improve clarity for the audio domain as well. An additional stabilization
that was shown to be helpful in Neural Style Transfer for audio spectrograms was the inclusion of losses based
on weighted energy contour and frequency energy contour [VS18]. Adding these terms may also be helpful in
our methodology.

7 Code

For this project, we leveraged the python libraries NumPy [WCV11] and scipy [JOP14] for computations with
arrays. We used matplotlib [HunO7] to construct the cost graphs. Additionally, we leveraged the pre-trained
NSynth autoencoder model provided by the Magenta project [Ten] as well as Tensorflow [ABCT16]. Additionally,
we used ffmpeg [BN*12] for audio manipulation.

The full code base is accessible to CS 230 staff at https://github.com/youhom/
CS230-project-submission.

Appendix

Experiment Iteration
0 50 99
Low to High 8286706 4409072 4399098
High to Low | 10242564 4323082 4302873
Chord-Pitch Pitch to Chprd 34289436 272692275 2539626
Chord to Pitch | 11554859 7192789 7180529
Table 1: Loss for Pitch Experiments. We can see the losses decrease monotonically in each experiment.

Pitch-Pitch

Contributions

Fabian setup the ICME GPU and AWS computing instances, implemented the style cost and conducted the
pitch-pitch experiments. Eric collected the dataset, wrote-up the milestone and conducted the pitch-chord
experiments. Youkow implemented the initial model and experimented with the architecture.

Acknowledgements

We would like to thank the Winter CS 230 course staff, particularly Zahra Koochak, for helpful discussions
throughout this project, as well as providing Amazon Web Services computing credits. We would also like to
thank the Institute for Computational and Mathematical Engineering for providing computing resources.

References

[ABCt16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In OSDI, volume 16, pages 265-283, 2016.

[BN*+12] Fabrice Bellard, M Niedermayer, et al. Ffmpeg. Availabel from: http://ffmpeg. org, 3, 2012.

[ERR*17] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan,
and Mohammad Norouzi. Neural audio synthesis of musical notes with wavenet autoencoders,
2017.

[FYR] Davis Foote, Daylen Yang, and Mostafa Rohaninejad. Do androids dream of
electric beats? https://audiostyletransfer.wordpress.com/2016/12/14/
do-androids-dream-of-electric-beats/.

[GDOP17] Eric Grinstein, Ngoc Q. K. Duong, Alexey Ozerov, and Patrick Pérez. Audio style transfer. arXiv
preprint arXiv:1710.11385, 2017.

[GEB15] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style.
arXiv preprint arXiv:1508.06576, 2015.

[HunO07] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering,
9(3):90-95, 2007.

[JOP14] Eric Jones, Travis Oliphant, and Pearu Peterson. {SciPy}: open source scientific tools for
{Python}. 2014.

[LCCT17] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabés P6czos. Mmd gan:
Towards deeper understanding of moment matching network. In Advances in Neural Information
Processing Systems, pages 2200-2210, 2017.

[Mit17] Parag K. Mital. Time domain neural audio style transfer. arXiv:1711.11160, 2017.

[Nata] Sound Nation. 1khz sine wave test tone (1 hour). https://www.youtube.com/watch?v=
3FBijeNg_Gs.

[Natb] Sound Nation. 2khz sine wave test tone (1 hour). https://www.youtube.com/watch?v=
3FBijeNg_Gs.

[Ten] Tensorflow. Tensorflow magenta. https://github. com/tensorflow/magenta.

[UL] Dmitry Ulyanov and Vadim Lebedev. Audio texture synthesis and style transfer. https:
//dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/.

[UVL17] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022v3, 2017.

[VDODZt16] Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[VS18] Prateek Verma and Julius O Smith. Neural style transfer for audio spectrograms. arXiv preprint
arXiv:1801.01589, 2018.

[WCVI11] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22-30, 2011.

[WRB17] Pierre Wilmot, Eric Risser, and Connelly Barnes. Stable and controllable neural texture synthesis
and style transfer using histogram losses. arXiv preprint arXiv:1701.08893, 2017.

