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Chest X-ray scans are the most frequent type of radiology exam worldwide, and are * DenseNet Architecture

commonly used to diagnose pneumonia, lung cancer, and dozens of other thoracic

illnesses. However, proper diagnosis is challenging, as a single scan can reveal multiple Block Structure:

illnesses, and radiologists often disagree in their diagnoses. In recent years, deep Input

convolutional neural networks have been shown to approach or even exceed human g Dense Block 1 E‘ H Dense Block 2 | | DenseBiocks
o - . . ¥ 3

doctors at this diagnosis task. In this work, we build on the DenseNet-based models E E‘ ﬁ H (—W

developed in several recent papers [CITATIONS]. To understand the behavior of these
models, we investigate feature embedding vectors output by DenseNet and find that they
exhibit clustering properties. By leveraging these embeddings with different final Dense Block:
classifiers, we produce new state-of-the-art results for thorax disease classification.

Dataset

Time series data of stock price of Intel:
o

Parameters For DenseNet:
Optimizer: Adam
Library: PyTorch

Data resource:
https://www.kaggle.com/nih-chest-
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» xrays/data + Hidden layers #: 169
. ]l):tn classes: * Delay #: 10

14 i Training Step #: 5000
Data set size:

« Train set: 2 years( )
« Dev set: 3 months¢—)
| * Test set: 3 months(<—)
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Data Preprocessing and Features

The input features we choose consist of three sets of variables. The first set is historical
daily trading data of INTC including previous 5 day’s adjusted closing price and log
returns, Open/Close price, High/Low price, and trading volume. These variables provide
basic information about INTC. The second set is the technical indicators that

Experime
500 (*"GSPC), CBOE Volatility Index (VIX), and PHLX Semiconductor Sector (*SOX ).

demonstrate various characteristics of the stock behavior. The third set is index: S&P

Conclusion

* Deeper DenseNets, along with careful tuning, can improve the accuracy of diagnosis on chest x-
rays.

Period CheXNet DenseNet169

* Daily Trading Data of INTC
+ Previous 5 days’ prices and log returns ‘

. Open/Cl ice. High/Lo . d Tradi 1 Random Forest Neighbors + The performance of LSTM is more robust than LWR. LSTM has smaller MSE than LWR for
pen/Llose price, High/Low price, and Trading volume 08094 0.8280 08199 07252 both Dev Set and Test Set, and it has less deviation in the prediction price plot
Cardi 09248 09147 0.8909 0.6945 09116 + The strategy based on LSTM yields higher returns and Sh Ratio than LWR-based strate;
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* Bollinger Band: two standard deviations from a moving average M 08676 08524 08621 06366 08509
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*All of the variables are scaled between 0 and 1 before we feed them into the model. [Z‘iTIy:‘(;:zotar:ding LSTM Networks, Colah’s blog,

http://colah.github.io/posts/2015-08-Understanding-LSTMs/




