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PREDICTING

We propose applying causal GAN to
solve image-to-image translation
problems. This machinery enables
sampling not only from conditional
observational distributions but also
from interventional distributions,
enabling us generate samples with
desired properties that may not be
present in the training set.

DATA

We used a dataset of facade images
assembled at the Center for Machine
Perception, which includes 606
rectified images of facades from
various sources.
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MODELS

1) The causal controller produce labels that are sampled from

observational or interventional distributions.

2) A DCGAN architecture to generate images based on the labels

output from the pretrained causal controller.
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DISCUSSION

We evaluate causal GAN by comparing
with DCGAN in observational and
interventional settings. 4 conditions are
designed and the causal graph window->
cornice was used to train causal controller.

The results from output shows that for
labels that have strong causal effects,
causal GAN has better performance than
DCGAN. For labels that have weak or no
causal effects, there is not much difference
between causal GAN and DC Gan.

FUTURE WORK

1) explore ways to integrate causality to
generative model, not only the label space.

2) explore situations when the causal
graph is not known, or cannot be
completely identified from data, or
potentially is influenced by latent factors.
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