Estimating the Discrete Fourier Transform using Deep Learning

Jonathan Tuck
Department of Electrical Engineering, Stanford University

(: . N\ (N 8
Motivation Approach Hyperparameter
e Entire fields hinge upon the Fourier e Three fully connected layers, linear activation functions Selection
Transform and its efficient computation e Training/Test Data e 17 nodes per (hidden) layer
e Faster implementations of the Discrete e 30000 random signals, bandlimited to 10 Hz (to avoid aliasing) e Training epochs = 20000
Fourier Transform (DFT) allow for more e With/without noise e Learning rate = 0.001
efficient computation in a wide variety of e 90/10 training/test split e Minibatch size = 250
systems, such as medical imaging, optics, - I
and radar systems fin] F{f}im] * Drop-out prot.)abl.hty =09
N | network 'h't A be th e Other regularization was found to
e Neural network architectures may be the .
not improve performance
solution to faster DFT computation times. e Cost Function > P P <
\ / m R 5 Future Work
(: . R J=(1/m F{fi} — F{fi « Exploiting structure in signals
The Discrete Fourier 1/)Z” Ui} = Pl poting gnass
T " (DFT) \ i=1) e Sparsity (compressed sensing)
ranstorm s " N\ |* Other transforms
. . Experimental Results :) ;
* N-point Discrete Fourier Transform Training E 81%10° Test E 5 1% 102 ¢ Discrete Cosine transform
L raining Error = &. =, lest Error = 2. K
chim . e Naive DFT computation time = 4.1ps, FFT computation time = 3.5us, neural network * Rado_n transform
F{f}[m] = Z fln)e*™mN m=0,...,N—1. DFT computation time = 1.9y . Continuous Wavelet transform
n=0
¢ Neural network successfully estimates DFT well (see below for example) (
e Maps N-vector to N-vector e Empirically, architecture is 2.2x faster than naive computation and 1.8x faster than References
* Generally used to map time series signals to FFT for N = 100. .
. . . F —-F F =6. 1074
their frequency domain representation IE47} = FASH/IF{SHl2 = 6.0 x 10
e Can be represented as a dense (complex- - Tm—
valued) matrix multiply z
e Naive computation time: O(N?))
* Fast implementation (Fast Fourier Transform =
(FFT)): O(NIog(N))
e There does not currently exist a general V
algorithm that implements the DFT faster S e
than O(Nlog(N)) B T i
\ J . VAN .

