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e Entire fields hinge upon the Fourier e Three fully connected layers, linear activation functions Selection
Transform and its efficient computation e Training/Test Data e 17 nodes per (hidden) layer
e Faster implementations of the Discrete e 30000 random signals, bandlimited to 10 Hz (to avoid aliasing) e Training epochs = 20000
Fourier Transform (DFT) allow for more e With/without noise e Learning rate = 0.001
efficient computation in a wide variety of e 90/10 training/test split e Minibatch size = 250
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¢ Neural network successfully estimates DFT well (see below for example) (
e Maps N-vector to N-vector e Empirically, architecture is 2.2x faster than naive computation and 1.8x faster than References
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* Fast implementation (Fast Fourier Transform =
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